

www.saber.ula.ve/avancesenquimica Avances en Química, 8(1), 29-40 (2013)

Artículo científico

Hvances en Química

Evaluación del óxido mixto Ni/MgO-La₂O₃ como catalizador en la reacción de combustión de metano en presencia de NO_x

Claudio Lugo*, Jairo Rondón, Patricia Pérez, Hildemaro Meléndez, Pedro Rodríguez, Edder García, Marlin Villarroel, Manuel Pérez, Ledys Sánchez, Freddy Imbert, Héctor Del Castillo

Laboratorio de Cinética y Catálisis, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101 – Venezuela.

(*) <u>claudiolugo@ula.ve</u>

Recibido : 05/12/2012	Revisado : 12/04/2013	Aceptado: 30/04/2013
------------------------------	------------------------------	----------------------

Resumen

Se prepararon óxidos mixtos de NiO/MgO-La₂O₃ variando las proporciones del soporte a través del método de impregnación sucesiva. Se emplearon diferentes técnicas para determinar sus propiedades físico-químicas, análisis de EDX, difracción de rayos X, DRX, métodos térmicos, TGA-DSC, espectroscopia infrarroja FTIR, área superficial método BET, reducción a temperatura programada, TPR-H₂, desorción a temperatura programada, TPD-O₂ y TPD-NO. Los resultados muestran que el óxido de níquel presenta una interacción fuerte con el soporte, la cual depende principalmente de la proporción de estos componentes. El test catalítico mostró la capacidad de éstos sólidos para la combustión del metano en presencia de gases del tipo NO_x, además de una buena selectividad hacia el CO₂. También se determinó que estos catalizadores desfavorecen la formación de N₂.

Palabras clave: Óxidos mixtos; La2O3; NiO

Abstract

We have prepared mixed oxides of NiO/MgO-La₂O₃ by varying the proportions of the support through of the successive impregnation method. Different techniques were used to determine their physical-chemical properties, EDX analysis, X-ray diffraction, XRD, thermal methods, TGA-DSC, FTIR infrared spectroscopy, method BET surface area, temperature-programmed reduction, TPR-H₂, temperature programmed desorption, TPD-O₂ and TPD-NO. The results show that nickel oxide presents a strong interaction with the support, which mainly depends on the proportion of these components. The test showed the catalytic capacity of these solids for the combustion of methane in the presence of NO_x type gases, and a good selectivity toward the CO₂. It was also found that these catalysts discourage the formation of N₂.

Keywords: Mixed oxides; La₂O₃; NiO

Introducción

Con la revolución industrial y el aumento de la población mundial, la superficie terrestre ha venido sufriendo cambios en cuanto al número y distribución de las especies vivas presentes. El cambio del uso de la tierra y la contaminación del aire, agua y suelos contribuyen de manera sostenida al deterioro de la misma. La formación de los óxidos de nitrógeno por medio de los motores de combustión interna es uno de los efectos secundarios más indeseables de la vida moderna. Además de ser muy peligroso para los seres humanos, el NO_x contribuye a la lluvia acida y la eutrofización en las zonas costeras¹.

Los óxidos de nitrógeno (NO_x) que se forman en los procesos de combustión se consideran como uno de los principales contaminantes emitidos al ambiente; éstos se

producen aun utilizando combustibles limpios como lo son el gas natural y el hidrógeno².

La ecuación general para la combustión de metano a baja temperatura es,

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$$

La ecuación general para la reducción de NO_x con metano en exceso de oxígeno es,

$$2NO + CH_4 + O_2 \rightarrow N_2 + CO_2 + 2H_2O$$

Generalmente los catalizadores son materiales con una gran área superficial que se utilizan en la industria química para aumentar la velocidad de una reacción y modificar la selectividad del proceso a un producto determinado y son el corazón de la gran mayoría de los procesos químicos del

29

mundo. Los mayores consumidores de catalizadores son las industrias de la refinación del petróleo, la petroquímica y la química de protección ambiental. En Venezuela los procesos catalíticos han sido la clave para el desarrollo de la industria de la refinación a nivel nacional.

Un tipo de óxido mixto altamente estudiado es la perovskita; se cree que a partir de estos óxidos se pueden producir partículas metálicas con alta dispersión, convirtiéndolos en prometedores sólidos para catálisis heterogénea selectiva³.

Los primeros estudios realizados, usaron óxidos mixtos de LaCoO₃ y LaMnO₃^{4,5}. Los datos obtenidos en estos estudios indicaron que la actividad específica de estos catalizadores varía considerablemente dependiendo del método de preparación. Generalmente, estos catalizadores exhiben una buena actividad para la reducción de NO y la oxidación de CO durante la combustión del metano, a temperaturas por encima de 475K⁶.

González Cortés y col⁷. estudiaron el sistema Ni/Sr/La₂O₃ encontrando que la interacción entre el óxido de níquel y el óxido de lantano depende de la cantidad de dopante y de la naturaleza de los defectos estructurales del soporte. Este tipo de interacción altera la reactividad superficial y la distribución de los productos y favorece la formación del gas de síntesis.

Chen y col.⁸ prepararon un catalizador soportado de Ce-Mg-O. Sus resultados indican que el catalizador $FeO_x/Ce-$ Mg-O exhibió una alta actividad en la combustión de metano a bajas temperaturas. Para este catalizador, se obtuvo 90% de conversión de CH₄ a una temperatura cercana a los 560°C. Esta alta actividad depende del tamaño de la partícula, la fase cristalina Ce-Mg-O y la interacción entre el FeO_x y Ce-Mg-O.

Wang v col.⁹ estudiaron óxidos mixtos de La_{1-x}Sr_xFeO₃ (x=0,0-1,0). El test catalítico mostró que estos óxidos favorecen la combustión de metano a temperaturas cercanas a los 400°C; también encontraron que la sustitución parcial de La por Sr incrementa la actividad. Propusieron que la oxidación catalítica del metano sobre estos catalizadores procede con la reacción superficial entre el CH₄ en fase gaseosa y el O₂ adsorbido. Además, la adición de vapor de agua o CO₂ inhibe la actividad del catalizador, pero esta inhibición es reversible y se vuelve despreciable a temperaturas de reacción altas. La utilización de catalizadores del tipo óxidos mixtos (con metales de transición soportados) en la reacción de combustión de metano para generar gas de síntesis (H₂/CO) en presencia de O₂ y NO_x, podría reducir considerablemente las emisiones de gases de invernadero al ambiente y, parte de los productos obtenidos, tendrían amplia aplicación en el sector petroquímico. Otra ventaja

de estos sólidos es que se puede estudiar el efecto que tiene sobre la reacción de combustión de metano, la variación de las relaciones de los metales incorporados sobre el soporte. También, se podría observar la disminución de coque como subproducto de la reacción, (debido al empleo de estos catalizadores), que generalmente lleva al envenenamiento del catalizador.

Parte experimental

Método de impregnación sucesiva

Los catalizadores se prepararon por el Método de Lunsford mediante una impregnación sucesiva de las sales de los nitratos de los diferentes metales de transición (Mg y Ni) en agua (ver tabla 1). Inicialmente, se agrega lentamente el La₂O₃, a una solución de nitrato de magnesio, se coloca en un rota-evaporador por tres horas a unos 70°C, posteriormente, se lleva a una estufa a 140°C por 15 horas y finalmente se calcina en una mufla por cuatro horas a 750°C, luego, se disuelve este sólido en una solución de nitrato de níquel y se repiten los pasos anteriormente descritos, es decir, se coloca en un rota-evaporador por tres horas a unos 70°C, posteriormente, se lleva a una estufa a 140°C por 15 horas y finalmente se calcina en un rota-evaporador por tres horas a unos 70°C, posteriormente, se lleva a una estufa a 140°C por 15 horas y finalmente se calcina en un rota-evaporador por tres horas a unos 70°C, posteriormente, se lleva a una estufa a 140°C por 15 horas y finalmente se calcina en una mufla por cuatro horas a 750°C ¹⁰.

Tabla 1: Catalizadores sintetizados por el Método de Lunsford (valores teóricos).

Sólido	NiO/ (c	Serie B /MgO-L on vaci Teórico	a2O3 (0) s	NiO (sin ve	Serie B. NiO/MgO-La2O3 (sin vacío) Teóricos		
	Ni (%)	Mg (%)	La (%)	Ni (%)	Mg (%)	La (%)	
1	19	09	72	19	09	72	
2	19	28	53	19	28	53	
3	19	33	48	19	33	48	
4	19	54	27	19	54	27	

Técnicas de caracterización

Se utilizaron diferentes técnicas para caracterizar los sólidos sintetizados. La espectroscopia infrarroja con transformada de Fourier, FTIR, utilizando un espectrofotómetro FTIR PERKIN-ELMER 1725X. El EDX se realizó en un microscopio Hitachi S2500 acoplado con espectrómetro Kevex modelo Delta-3. La DRX usa un difractómetro de polvo marca Philips modelo PW-1250. Los datos se toman con radiación CuK α (λ = 1.54 Å). Para el análisis térmico TGA-DSC se empleó un SDT/Q-600 marca IB-TA Instruments. La adsorción de N2, en un aparato Micromeritics modelo ASAP 2010. Las muestras se desgasifican a 300°C en vacío de 10-3torr. El análisis de desorción (TPD-NO y TPD-O₂) y de reducción (TPR-H₂)

se realizó utilizando un equipo micromeritics TPD/TPR 2900 (con una velocidad de calentamiento de 10° C/min, y un flujo de H₂ de 30ml/min, para la reducción).

Resultados y discusión

Análisis EDX.

Se prepararon dos (02) series de catalizadores soportados sobre La_2O_3 ; cada serie consta de cuatro (04) catalizadores a los cuales se les varía la proporción de los metales presentes; Una de las series (B) aplicando vacío en el inicio de la síntesis y en la otra serie (SV) sin vacío (tabla 2).

Tabla 2: Catalizadores sintetizados por el Método de Lunsford (valores obtenidos por EDX).

Sólido	NiO) (con	Serie B. NiO/MgO-La2O3 (con vacío) EDX			Serie SV. NiO/MgO-La ₂ O ₃ (sin vacío) EDX		
	Ni (%)	Mg (%)	La (%)	Ni (%)	Mg (%)	La (%)	
1	18	10	72	19	8	73	
2	19	27	54	18	27	55	
3	18	33	49	19	32	49	
4	18	55	27	19	53	28	

Los contenidos de metal de cada uno de los catalizadores se determinaron por EDX. Todas las relaciones experimentales calculadas, tienen valores bastante cercanos a los valores de las relaciones teóricas.

Espectroscopia Infrarroja (FTIR)

En la figura 1 se muestra los espectros IR de los catalizadores NiO/MgO-La₂O₃ sintetizados por el método de impregnación sucesiva, sin vacío en el rota evaporador.

Fig. 1: Espectros IR de las serie SV (sin vacío), catalizadores NiO/MgO-La₂O₃. a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg.

Se observan cinco bandas importantes, dos a 1489 y 1396cm^{-1} que corresponden al dioxomonocarbonato de lantano (La₂O₂CO₃), una pequeña banda en 857 cm⁻¹ que corresponde a modos v2 del grupo carbonato del

 $La_2O_2CO_3^{11}$. La banda en 649cm⁻¹ pertenece a la superposición de modos v4 del grupo carbonato del $La_2O_2CO_3$ y a la fase hidratada del lantano¹². Finalmente, la banda aproximadamente en 491cm⁻¹ es característica del estiramiento Mg—O¹³.

En la figura 2 se muestra los espectros IR de los catalizadores NiO/MgO-La₂O₃ sintetizados por el método de impregnación sucesiva, con vacío en el rota evaporador.

Estos catalizadores muestran un comportamiento similar a los de la figura 1, observándose nuevamente la fase del dioxomonocarbonato de lantano (La₂O₂CO₃) en 1489 y 1396cm⁻¹, la pequeña banda en 857cm⁻¹ debido a modos v2 del grupo carbonato del La₂O₂CO₃¹¹; la banda en 649cm⁻¹ perteneciente a la superposición de modos v4 del grupo carbonato del La₂O₂CO₃ y a la fase hidratada del lantano¹², la banda en 491cm⁻¹ característica del estiramiento Mg—O¹³.

También se observa una pequeña variación en el espectro con mayor cantidad de lantano, donde la banda característica del enlace Mg–O sufre un desplazamiento al compararla con el catalizador con mayor cantidad de magnesio, lo cual puede ser debido a una interacción fuerte entre el magnesio y el lantano que deforma la red cristalina del oxido de magnesio generando defectos estructurales, lo cual se refleja en un descenso de la frecuencia característica del estiramiento Mg–O¹⁴.

Los catalizadores preparados de los sólidos con las mismas composiciones utilizando vacío (serie B) y sin vacío (serie SV), no se ven afectados, puesto que las diferencias entre las bandas significativas del IR no sufren un desplazamiento importante.

Fig. 2: Espectros IR de las serie B (con vacío), catalizadores NiO/MgO-La₂O₃. a) 10% Mg, b) 27% Mg, c) 33% Mg y d) 55% Mg

Difracción de rayos X, DRX.

En la figura 3 se muestran los difractogramas de los catalizadores NiO/MgOLa₂O₃ sintetizados por el método de impregnación sucesiva con diferentes proporciones de los componentes del soporte, calcinados a 750°C y sin vacío en el rota evaporador.

Se observa en los difractogramas la presencia de máximos poco definidos que indican que las muestras son escasamente cristalinas, posiblemente con mediano ordenamiento estructural, observándose que a medida que aumenta la cantidad de Lantano en los catalizadores, las intensidades de los difractogramas disminuyen.

En estos sólidos se observa las reflexiones características tanto de las fases hidratada del lantano $La(OH)_3$, como del dioxomonocarbonato de lantano $La_2O_2CO_3$, debido a la alta tendencia de este material a la absorción de vapor de agua y dióxido de carbono del medio ambiente¹⁴.

NiO/MgO-La₂O₃sin vacío

Fig. 3: Difractogramas de la serie SV (sin vacío), catalizadores NiO/MgO-La₂O₃. a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg.

También se aprecian algunas reflexiones características del oxido mixto, niquelato de lantano (LaNiO₃), todas estas fases presentan un bajo grado de cristalinidad. Elevadas composiciones de magnesio mejoran la cristalinidad del material, cuyas reflexiones coinciden con la solución sólida $Mg_{1-x}Ni_xO$, formada por la sustitución de iones Mg^{2+} por iones Ni²⁺ en dicha solución¹⁵.

En la figura 4 se muestran los difractogramas de los catalizadores NiO/MgOLa₂O₃ sintetizados por el método de impregnación sucesiva con diferentes proporciones de los componentes del soporte, calcinados a 750°C y con vacío en el rota evaporador.

En estos catalizadores se observa que no hay cambios significativos con respecto a los difractogramas de la figura 4; están presentes la fase hidratada del lantano, la del dioxomonocarbonato de lantano, la fase del niquelato de lantano al igual que la solución sólida de $Mg_{1-x}Ni_xO$.

Estos resultados indican que el método de preparación, tanto para la serie SV como para la serie B, parece no tener ningún efecto sobre las diferentes fases cristalinas presentes en estos catalizadores.

Fig. 4: Difractogramas de la serie B (con vacío), catalizadores NiO/ MgO-La₂O₃. a) 10% Mg, b) 27% Mg, c) 33% Mg y d) 55% Mg.

Métodos térmicos, TGA-DSC.

En la figura 5 se muestran los termogramas de los catalizadores NiO/MgO-La₂O₃ de la serie SV (sin vacío). La figura 6 muestra los DSC de los catalizadores de la serie SV (sin vacío). El termograma del catalizador 1 (08/73 Mg/La) figura 5(A), presenta cuatro fases y una pérdida total de masa de 22.5% a lo largo de 800°C.

Fig. 5: TGA de los catalizadores NiO/MgO-La₂O₃ de la serie SV (sin vacío); a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg.

Fig. 6: DSC de los catalizadores NiO/MgO-La₂O₃ de la serie SV (sin vacío); a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg.

Sólido		Temperaturas de los máximos en °C							
Ni/Mg/La	Transición 1	Transición 2	Transición 3	Transición 4	Transición 5	Transición 6			
1	95		362,15	456,15		550-750			
2	95	303,37	362,76	446,06		550-750			
3	95	311,56	364,70	444,71		550-750			
4	95	354,83	369,25	438,46	456,81	550-750			

Tabla 3: Temperaturas de los máximos de los picos DSC para los catalizadores estudiados.

El primer paso, un pequeño decrecimiento en el rango de $30-120^{\circ}$ C, produciendo un pico ancho en la grafica DSC a 95° C debido a una fisisorción de agua sobre la superficie del La₂O₃ y correspondiente al 2% de la pérdida de masa. En el rango entre $310-400^{\circ}$ C, el primer paso de descomposición del La(OH)₃ ocurre con un 10,5% de pérdida de masa y formando un intermediario LaO(OH) oxihidroxido de Lantano.

Este oxihidroxido descompone en el rango de 420-540°C para formar La₂O₃, correspondiendo al 10% de pérdida de masa¹⁶; Estos pasos de descomposición del La(OH)₃ son probablemente debido a la adsorción de CO₂ sobre los defectos estructurales del oxido de lantano. Este proceso de adsorción superficial reduce un aumento de los iones hidroxilo en la red cristalina del hidróxido de lantano y causa una pérdida de masa más baja que la esperada acompañando la segunda fase de deshidratación. El último paso está asociado con descomposición térmica de especies carbonatadas ocurriendo relativamente sobre un rango de temperatura de 550-750°C, probablemente debido a superficies heterogéneas¹⁷.

Los termogramas del segundo 27/55 Mg/La y tercer 32/49 Mg/La catalizador (figura 5(B) y 5(C)), presentan a diferencia del primero cinco fases y una pérdida de masa total de alrededor de 35% a lo largo de 800°C. Cuatro de las fases son las mismas que se reportan en el caso anterior; la presencia de agua, los dos pasos de la descomposición del La(OH)₃ y las especies carbonatadas; La fase adicional en el rango de 280–340°C es debido al primer pico de descomposición del nitrato de magnesio al Mg¹⁺(MgO) en los sitios de intercambio.

El aumento en la cantidad porcentual de Magnesio en los catalizadores produce un aumento progresivo en la pérdida total de masa, ver la tabla 3, al igual que un aumento gradual en la pérdida de masa del segundo paso de descomposición del La(OH)₃.

También se observa un decrecimiento leve en el rango de temperaturas en la primera y la segunda fase de descomposición del La(OH)₃, especialmente en el cuarto catalizador 53/28 Mg/La, donde se aprecian las cinco fases relacionadas al TGA, pero se distinguen los picos DSC superpuestos uno del otro, al igual que un pico adicional

cercano a los 470°C posiblemente debido a la descomposición de especies hidratadas de magnesio, solapadas por el segundo paso de descomposición del La(OH)₃.

Área superficial; método BET.

La figura 7 muestra las isotermas de adsorción de N_2 correspondientes a los catalizadores óxidos mixtos. Todas las isotermas obtenidas en este análisis para los distintos catalizadores presentan la forma típica de una isoterma tipo II, correspondiente a sólidos no porosos o que contienen poros muy grandes (macroporos).

Fig. 7: Isotermas de adsorción de N_2 de los catalizadores de óxidos mixtos

Estas isotermas presentan un "plateau" a presiones relativas bajas, que corresponde a la saturación de la primera capa del sólido, y el cual permite determinar su área superficial¹⁷.

La forma de la histéresis presente en cada una de las isotermas de adsorción de los catalizadores estudiados, son del tipo H3 correspondientes usualmente a sólidos consistiendo de agregados o aglomerados de partículas formando ranuras tipo poros (laminas o partículas en forma de cubo), uniformes o no-uniformes en su tamaño y/o forma. En la tabla 4 se encuentran las áreas superficiales de los distintos catalizadores estudiados. Se observa que al incrementar el magnesio se produce un aumento en el área superficial BET, hasta alcanzar un máximo a 27% molar de Mg. El máximo en las áreas puede ser debido a la presencia de una interacción entre los componentes del soporte (MgO-La₂O₃) y el NiO, pudiendo afectar la estructura del MgO.

En la tabla 4 se observa que en las áreas superficiales externas el máximo valor encontrado se da para el tercer catalizador (32/49 Mg/La), debido a que el magnesio en este caso parece migrar a la superficie externa del sólido, disminuyendo la formación del MgO/La₂O₃ y también el área BET del catalizador, provocando un aumento en el área superficial externa.

La presencia de volúmenes y áreas de microporos en los catalizadores estudiados indica la presencia de sólidos micro y mesoporosos, que se corrobora al observar los datos obtenidos en el método t-plot, al igual que la forma de la curva de los catalizadores estudiados es similar a la curva teórica para sólidos micro y mesoporosos como lo indica el método t-plot¹⁷.

Tabla 4. Propiedades texturales de los sólidos determinadas	por adsorción de N ₂
---	---------------------------------

Са	ıtaliza	dor	Área	Superficial	uperficial Método T-plot (m ² /g)			
Ni	Mg	La	BET (m^2/g)	Langmuir (m^2/g)	Área microporo	Volumen microporo	Área Sup. externa	
19	8	73	22,7742	29,4414	5,4752	0,002323	17,2990	
18	27	55	135,177	193,9940	37,6919	0,016648	97,4852	
19	32	49	118,391	178,5710	6,2476	0,002415	112,1438	
19	53	28	64,3766	92,4173	28,4352	0,012404	35.9414	

Reducción a temperatura programada, TPR-H₂.

Los perfiles de reducción de los catalizadores NiO/MgO- La_2O_3 sintetizados se muestran en la figura 8 y las temperaturas correspondientes a los máximos de los picos son presentadas en la tabla 5.

Fig. 8: Perfiles de reducción de los catalizadores NiO/MgO-La $_2O_3$ de la serie SV (sin vacío); a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg

En estos reductogramas se observa una disminución de las especies reducibles con el incremento de la cantidad de magnesio, debido a que el magnesio se deposita sobre la superficie del soporte, provocando una especie de barrera en la superficie y ocasionando una disminución de los sitios activos del catalizador, con lo cual hay menos posibilidad de especies para la reducción¹⁸.

Los perfiles de reducción de estos catalizadores muestran tres picos característicos: uno cercano a los 350°C, el segundo entre 570-600°C y el tercero entre 727-784°C; el primero debido a los diferentes grados de interacción del NiO con el La₂O₃; Parte del consumo de H₂ de esta señal a temperatura de reducción, T_R, por debajo de la T_R del NiO libre (360°C) se puede atribuir a la reducción del NiO con un bajo grado de cristalinidad, ya que esta fase no se observó por DRX¹².

Tabla 5: Temperatura de los máximos en los perfiles de TPR-H₂ correspondientes a los catalizadores de óxidos mixtos.

(Catalizado	r	Tempe l	ratura má os picos ('	íxima de °C)
Ni	Mg	La	Pico 1	Pico 2	Pico 3
19	8	73	349,22	589,33	727,33
18	27	55	334,88	578,44	784,11
19	32	49	327,11	570,33	784,11
19	53	28	372,77	602,77	

Los picos a temperaturas de reducción superiores a 400°C, son debidos al segundo paso reductivo del niquelato de lantano (LaNiO₃), cuya reducción se inicia a bajas temperaturas. La adición de magnesio, (> 9%), disminuye el grado de reducción del NiO soportado¹⁸.

Ecuaciones de la reducción de las especies de óxidos mixtos.

1)	H_{2}	+	NiO	$\rightarrow l$	Vi -	$+ H_2$	2			
2)	H_{2}	+	2LaN	iO ₃	\rightarrow	La_2Ni	$_{2}O_{5}$	+ .	H_2O	
2.1)	$2H_2$	+	La_2Ni	$_{2}O_{5}$	\rightarrow	La_2O_3	+	$2H_2C$) +	2Ni
3)	H_{2}	+	La_2Nic	$D_4 - $	$\rightarrow L$	a_2O_3	+ F	I_2O	+ N	i

La tabla 6 muestra el área total de los picos encontrados en los catalizadores de los óxidos mixtos durante el TPR- H_2 .

Tabla 6: Datos obtenidos del área total en la TPR-H₂.

Cat	alizad	or	Área de	los picos	del TPR-	H_2
Ni	Mg	La	Pico 1	Pico 2	Pico 3	Área total
19	8	73	07,847	27,075	06,929	41,851
18	27	55	04,851	33,117	13,075	51,043
19	32	49	04,529	28,333	11,643	44,505
19	53	28	02,625	08,354		10,978

De la tabla 6 se observa que a medida que aumenta la cantidad de magnesio en los catalizadores, disminuye el área del pico 1, el cual aparece gracias a los diferentes grados de interacción del NiO con el La_2O_3 . Esta

disminución indica que el magnesio ejerce un efecto importante sobre la reducibilidad de la fase níquel-soporte.

Desorción a temperatura programada, TPD-O₂.

Los perfiles de desorción de oxígeno de los catalizadores NiO/MgO-La₂O₃ se muestran en la figura 9 y las temperaturas de los máximos de los picos en la tabla 7.

Tabla 7: Temperatura de los máximos en los perfiles de TPD-O₂ correspondientes a los catalizadores de óxidos mixtos.

Cat	alizad	or	Temperatu	Femperatura máxima de los picos °C				
Ni	Mg	La	Pico 1	Pico 2	Pico 3			
19	8	73	407,13	508,82	700,27			
18	27	55	422,12	529,82	721,15			
19	32	49	422,12	544,79	721,16			
19	53	28	442,29	535,71	724,22			

El perfil de desorción del compuesto puro de La_2O_3 muestra tres picos de desorción, a 400 °C, a 500°C y a 720°C; el MgO muestra tres picos de desorción, a 340°C, 650°C y 710°C respectivamente. En ambos compuestos los picos están asociados a la adsorción de oxígeno en sus estructuras.

Los perfiles de desorción de los catalizadores muestran tres picos, a 400°C, 500°C y 720°C aproximadamente; el primer pico está asociado con el pico de desorción del La₂O₃, se observa que a medida que disminuye la cantidad de lantano presente en los catalizadores, la señal tiende a disminuir, aunque en el primero de los sólidos esta señal aparece solapada con la del NiO; el segundo pico está relacionado con el La₂O₃, mientras que la tercer señal es una banda solapada entre las bandas del La₂O₃, y el MgO.

Fig. 9: Perfiles de desorción de oxígeno de los catalizadores NiO/MgO-La₂O₃ de la serie SV (sin vacío); a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg

En estos catalizadores se observa un desplazamiento de las señales a temperaturas de desorción superiores, debido a que la presencia de mayor cantidad de magnesio en éstos sólidos, puede no favorecer la adsorción de oxigeno. La tabla 8 muestra el área total de los picos encontrados en los catalizadores de los óxidos mixtos durante el TPD-O₂. En esta tabla, se observa que las áreas del primer pico tienden a decrecer debido a la disminución del lantano; las áreas del segundo pico tienden a un valor constante, mientras en el tercer pico, las áreas varían entre la del magnesio y el lantano, es decir, un pico de bandas solapadas.

Tabla 8: Datos obtenidos en la desorción de O₂.

Cat	alizad	or	Área de	los picos	del TPD-	$\cdot O_2$
Ni	Mg	La	Pico 1	Pico 2	Pico 3	Área total
19	8	73	0,7020	0,1333	1,1534	1,9488
18	27	55	0,5259	0,2280	1,1490	1,9029
19	32	49	0,5853	0,2119	1,1911	1,9876
19	53	28	0,2736	0,2261	1,0755	1,5752

Desorción a temperatura programada, TPD-NO_X.

Los perfiles de desorción de NO_x de los catalizadores NiO/MgO-La₂O₃ sintetizados se muestran en la figura 10 y las temperaturas de los máximos de los picos se muestran en la tabla 9.

Fig. 10: Perfiles de desorción de NO_x oxígeno de los catalizadores NiO/MgO-La₂O₃ de la serie SV (sin vacío); a) 8% Mg, b) 27% Mg, c) 32% Mg y d) 53% Mg

Los perfiles de desorción de los catalizadores muestran tres picos, a 400°C, 500°C y 720°C aproximadamente; el primer pico está asociado con el pico de desorción del La₂O₃, y se observa que a medida que se disminuye la cantidad de lantano en los catalizadores, la señal tiende a disminuir, aunque en el primero de los sólidos al igual que en el TPD-O₂, esta señal aparece solapada con la del NiO; el segundo pico puede relacionarse con el La₂O₃, mientras que la tercer señal es una banda solapada entre las bandas del La₂O₃, y el MgO, notándose que es aguda en la parte superior como la del lantano y ancha en la inferior como en el MgO.

Cat	alizad	or	Temper	atura má:	xima de los picos °C
Ni	Mg	La	Pico 1	Pico 2	Pico 3
19	8	73	429,25		710,77
18	27	55	409,98	503,83	713,71
19	32	49	398,88	492,72	721,88
19	53	28	390,61	487,28	719,05

Tabla 9: Temperatura de los máximos en los perfiles de TPD-O₂ correspondientes a los catalizadores de óxidos mixtos.

En estos catalizadores se observa también un desplazamiento de las señales a temperaturas de desorción superiores, debido a que la presencia de mayor cantidad de magnesio en estos sólidos no favorece la adsorción de especies de NO_x.

Tabla 10: Datos obtenidos en desorción de NOx.

Catalizador			Área de los picos del TPD-N O_X				
Ni	Mg	La	Pico 1	Pico 2	Pico 3	Área total	
19	8	73	1,8575		1,5088	3,3663	
18	27	55	0,6177	0,5918	1,1353	2,3448	
19	32	49	0,4323	0,6615	1,2123	2,3061	
19	53	28	0,2550	0,2698	0,9733	1,4981	

La tabla 10 muestra el área total de los picos de los óxidos mixtos durante el TPD-NOx. Se observa que las áreas del primer pico tienden a disminuir debido a la disminución del lantano, las áreas del segundo pico tienden a un valor constante, mientras en el tercer pico, las áreas tienden a un valor entre el del magnesio y el lantano, es decir, un pico de bandas solapadas.

Pruebas catalíticas:

Condiciones de reacción:

La actividad catalítica se estudió en un rango de temperatura entre 300-550°C, el sólido tuvo un pretratamiento de 1h a 500°C, a un flujo de 50ml/min totales, con Helio como gas de arrastre.

Masa del catalizador =	150mg
WHSV =	30.000h ⁻¹ (velocidad espacial)
$[NO_x] =$	30.000ppm
[CH ₄] =	40.000ppm
[O ₂] =	5%
[He] =	gas de relleno hasta 50ml/min

El reactor empleado es de cuarzo en forma de U. El diseño del reactor permite introducir sólidos en polvo e incluso la sección de un monolito. El reactor se coloca dentro de un horno tubular que permite controlar de manera programada las diferentes temperaturas (rampa) para poder llevar a cabo las pruebas catalíticas. Se empleó una columna capilar PoraPlot Q (30m/0,53mm/0,25microm) y una Molecular Sieve (15m/0,53mm/0,25microm) marca J&W Agilent Tecnology. Conversión de CH₄ y selectividad de CO₂:

La conversión de CH_4 se realizó a partir de la siguiente ecuación,

$$\%Conv_{CH_4} = \left(\frac{\left[CH_4\right]_i - \left[CH_4\right]_f}{\left[CH_4\right]_i}\right) \times 100\%$$

donde:

 $%Conv_{CH_4}$ Porcentaje de conversión de CH₄

$$[CH_4]_i$$
 Concentración de CH₄ al inicio de la reacción

$$[CH_4]_f$$
 Concentración de CH₄ promedio a la temperatura de la reacción

Se calculó la selectividad a CO2 mediante la relación,

$$\% Selec_{CO_2} = \left(\frac{[CO_2]_f}{[CH_4]_i - [CH_4]_f}\right) \times 100\%$$

donde:

% Selec_{co₂} Porcentaje de selectividad del CO₂

$$\begin{bmatrix} CO_2 \end{bmatrix}_f$$
 Concentración CO₂ formado durante la reacción a una temperatura dada

$$\begin{bmatrix} CH_4 \end{bmatrix}_i$$
 Concentración de CH₄ al inicio de la reacción

 $\begin{bmatrix} CH_4 \end{bmatrix}_f$ Concentración de CH₄ promedio a la temperatura de la reacción

Resultados de las pruebas catalíticas:

Se evaluó la actividad de los distintos catalizadores en la reacción de combustión de metano con NO_x variando la temperatura en la mezcla de reacción.

La figura 11(a) muestra tres picos característicos de las especies estudiadas, el primero cercano a 8,30min para el CO_2 , el segundo a 9,50min del O_2 y el tercero a 10,90min correspondiente al CH_4 . La figura 11(b) adicionalmente presenta NO_x en la mezcla, sin embargo, no se observa la presencia de dicho gas, encontrándose posiblemente enmascarado o solapado junto con el pico de CH_4 ; todo esto apoyado con los cromatogramas individuales para cada gas estudiado.

La figura 11 muestra uno de los catalizadores utilizados y sus cromatogramas para las siguientes reacciones,

$$\begin{array}{rcl} CH_4 &+& O_2 &\rightarrow & Rx.1 \\ CH_4 &+& NO &+& O_2 &\rightarrow & Rx.2 \end{array}$$

La conversión de CH_4 se ve favorecida a medida que se llega a altas temperaturas y, cuando se tiene un exceso de oxígeno.

Manadara	Densili	Temp.	Conv.	Selec.
Muestra	Keaccion	(°C)	$CH_4(\%)$	$CO_{2}(\%)$
		500	17,83	80,39
	Rx. 1	400	04,42	02,21
Sólido 1		300	02,08	
$Mg_{(08)}/La_{(73)}$		500	15,41	68,63
	Rx. 2	400	03,67	03,17
		300	01,25	
		500	21,71	97,07
	Rx. 1	400	04,44	08,43
Sólido 2		300	01,34	
$Mg_{(27)}/La_{(55)}$		500	12,74	88.62
	Rx. 2	400	01,89	01,34
		300	01,20	
		500	15,17	97,72
	Rx. 1	400	05,03	06,11
Sólido 3		300	06,01	
$Mg_{(32)}/La_{(49)}$		500	17,82	75,81
	Rx. 2	400	07,46	01,12
		300	01,53	
	R x. 1	500	13,92	30,23
		400	06,99	
Sólido 4		300	01,23	
$Mg_{(53)}/La_{(28)}$		500	09,06	26,33
	Rx. 2	400	03,86	01,58
		300	00,91	

Tabla 11: Resultados de la conversión de CH_4 y selectividad de CO_2 .

En la figura 12(a) se percibe que a medida que aumenta el magnesio en los catalizadores, el metano es menos reactivo para producir CO_2 a altas temperaturas, mostrando el sólido 2 (27/55 Mg/La) la mayor conversión, debido a posibles arreglos especiales en la estructura del catalizador, por la formación de un óxido mixto finamente disperso sobre el soporte, producto de la interacción entre el níquel y el lantano, que favorecen la producción del dióxido de carbono¹⁵.

La figura 12.(b), muestra la conversión del CH₄ ahora en presencia del NO_x, observándose que cuando aumenta el magnesio presente en los catalizadores, decae la conversión del hidrocarburo, mostrando la mayor conversión el sólido 3, (32/49 Mg/La), en este caso debido a la mayor área superficial externa, favoreciendo de alguna manera que el metano sea adsorbido más fácilmente en la superficie del óxido mixto, para que posteriormente desorba cuando reaccione con el oxígeno y forme CO₂. Sin embargo, existen dos causas que pueden explicar la disminución del CO₂ y la no presencia de N₂ en los productos de reacción; primero que el NO y el metano pueden estar compitiendo por los sitios activos del catalizador, disminuyendo los sitios activos disponibles y por tanto generando una caída en la formación de CO₂; segundo, la adsorción del NO en el catalizador es de

manera irreversible, o sea que envenena al sólido, bloquea los sitios activos y evita la formación de CO_2 al igual que la de N_2 o NO_2 .

Fig. 11: Cromatogramas para a) reacción de combustión del metano y b) combustión de CH_4 con NO_x , en presencia y ausencia de uno de los catalizadores

La conversión de metano se ve favorecida a medida que se aumenta la temperatura de reacción. En este proceso el metano puede reaccionar en presencia de oxigeno a través de una reacción principal,

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \qquad (1)$$

Sin embargo, puede reaccionar con el NO en presencia de oxígeno a través de la reacción,

$$2\text{NO} + 4\text{CH}_4 + 7\text{O}_2 \rightarrow \dots$$
$$\dots \rightarrow N_2 + 4CO_2 + 8H_2O \quad (2)$$

La figura 13 ilustra la selectividad de CO_2 de los catalizadores de óxidos mixtos. El sólido 2 (27/55 Mg/La) fue el de mayor selectividad en la reacción en presencia del gas NO_x (reacción 2). Esto se puede observar en la tabla 11.

Fig. 12: Porcentaje de conversión de metano, a) $CH_4 + O_2 \rightarrow y b$) $CH_4 + O_2 + NO \rightarrow$

A temperaturas por debajo de los 400°C la selectividad hacia CO_2 es casi nula, sin embargo, cuando se está en los 500°C hay un cambio brusco del comportamiento, evidenciándose un aumento significativo en la selectividad hacia CO_2 , mostrando que los catalizadores utilizados presentan actividad a esta temperatura. Se conoce que el metano presenta actividad solo a temperaturas cercanas a los 700°C, indicando que los catalizadores aceleran la descomposición del hidrocarburo¹⁸.

El comportamiento que se observa en ambas gráficas de la figura 13 muestra que el NO_x no parece reaccionar pero sí competir con el metano a temperaturas cercanas y por debajo de los 500°C, provocando que prácticamente todo el metano que reacciona con el O_2 se convierta en CO_2 y el resto quede simplemente remanente sin reaccionar.

El tipo de mecanismo que se efectúa para la combustión de metano en presencia de NO_x influye significativamente en los resultados obtenidos en las pruebas catalíticas; el mecanismo Lagmuir-Hinshelwood (IUPAC Compendium) en el cual ambos reactivos se adsorben en el catalizador para posteriormente reaccionar entre sí, ver figura 14.

Dos posibles hechos que explican estos resultados y ratifican el mecanismo propuesto son los siguientes, inicialmente el NO_x puede ocupar los sitios activos del

Fig. 13: Porcentaje de selectividad de CO₂, a) CH₄ + O₂ \rightarrow y b) CH₄ + O₂+NO \rightarrow

metano (principalmente) y del O_2 en el catalizador, causando una disminución de especies reaccionantes y en consecuencia una menor producción de CO_2 .

También, que se esté formando NO_2 como uno de los productos de reacción no cuantificable como intermediario, es decir en pequeñas cantidades no detectables por el cromatógrafo de gases y que disminuye la producción de CO_2 , ya que el metano ahora necesitaría reaccionar tanto con el oxígeno para formar CO_2 como con el NO_x para producir NO_2 aún en pequeñas cantidades

Fig. 14: Adsorción competittiva por los mismos sitios. Mecanismo Langmuir - Hinshelwood

Conclusiones

Las técnicas de caracterización utilizadas, señalan que no hay diferencias significativas entre los catalizadores preparados con vacío y sin vacío en el evaporador, lo que indica que este no es el paso determinante en la preparación de los sólidos.

Las evidencias experimentales apuntan a la presencia de una interacción entre los componentes del catalizador que deforma la red cristalina del óxido de magnesio por la creación de defectos estructurales en la interfase de éstos sólidos.

El estudio de la adsorción de N_2 sobre las áreas superficiales, demuestra que los catalizadores son micro y mesoporosos, lo que permite concluir que el intercambio en estado sólido afectó parcialmente la microporosidad del soporte.

El aumento en la cantidad de magnesio en los catalizadores, parece no favorecer la adsorción de especies relacionadas con O_2 ni con especies de NO_x en la superficie de los sólidos.

Los catalizadores aceleran la combustión del metano a temperaturas cercanas a los 500°C.

La selectividad hacia la formación de CO_2 no se ve afectada por la presencia o ausencia de NO_x en el sistema de reacción.

La presencia de N_2 no es detectada o se encuentra en pequeñas cantidades no cuantificables, lo que indica que la descomposición del NO_x no es favorecida con este tipo de catalizadores en presencia de metano.

Referencias

- K Kammer, E Skou, H Christensen, T Turek. Perovskites as Catalysts for the Selective Catalytic Reduction of Nitric Oxide with Propene: Relationship between Solid State Properties and Catalytic Activity. Journal of Catalysis, 199, 132-140 (2001).
- P Alvarado, F Cadavid, F Mondragón, W Ruíz, A Amell. Estudio cinético químico de la formación de óxidos de nitrógeno en la combustión sin llama de metano. Energética, 41, 13-22 (2009).
- 3. M Goldwasser, M Rivas, E Pietri, M Pérez-Zurita, M Cubeiro, A Grivobal-Constant, G Leclercq. Perovskites as catalysts precursors: synthesis and characterization. Journal of Molecular Catalysis, A: Chemical, 228(1-2), 325-331 (2005).
- R Voorhoeve, J Remeika, L Trimble, A Cooper, F Disalvo, P Gallagher. Perovskite-like La_{1-x}K_xMnO₃ and related compounds: Solid state chemistry and the catalysis of the reduction of NO by CO and H₂. Journal of Solid State Chemistry, 14(4), 395-406 (1975).
- R Voorhoeve, L Trimble, C Khattak. Exploration of perovskite-like catalysts: Ba₂CoWO₆ and Ba₂FeNbO₆ in NO reduction and CO oxidation. Materials Research Bulletin, 9(5), 655-666 (1974).

- N Mizuno, M Yamato, M Tanaka, M Misono. Reactions of CO and NO over La_{2-x}A_xCu_{1-y}B_y0₄. A K₂NiF₄-Type Mixed Oxide. Chemistry of Materials, 1, 232-236 (1989).
- S González-Cortés, JC Hernández, A Uzcátegui, F Imbert. Caracterización de catalizadores mediante técnicas termoprogramadas: Desorción y reducción a temperatura programada. Revista de la Sociedad Venezolana de Química, 21(3), 11-21 (1998).
- M Chen, L Fan, X Zheng, Effect of Novel Supporter on Catalytic Combustion of Methane. Journal of rare Earths, 24(4), 447-450 (2006).
- CH Wang, CL Chen, HS Weng. Surface properties and catalytic performance of La_{1-x}Sr_xFeO₃ perovskite-type oxides for methane combustion. Chemosphere, 57(9), 1131-1138 (2004).
- D Driscoll, W Martir, J Wang, JH Lunsford. Formation of gas-phase methyl radicals over magnesium oxide. Journal of American Chemical Society, 107(1), 58-63 (1985).
- 11. S González-Cortés, I Aray, S Rodulfo-Baechler, C Lugo, H Del Castillo, A Loaiza-Gil, F Imbert, H Figueroa, W Pernía, A Rodríguez, O Delgado, R Casanova, J Mendialdua, F Rueda. On the structure and surface properties of NiO/MgO– La₂O₃ catalyst: Influence of the support composition and preparation method. Journal of Materials Science, 42, 6532-6540 (2007).
- 12. T Le Van, M Che, JM Tatibouet, M Kermarec. Infrared Study of the Formation and Stability of La₂O₂CO₃ during the Oxidative Coupling of Methane on La₂O₃. Journal of Catalysis, 142(1), 18-26 (1993).
- 13. SY Kuzmitskaya, GV Odegova, NA Vasil'eva, LM Plyasova, TA Kriger, VI Zaikovkii. Defective Magnesium Oxide: Synthesis and Studies of Structure Formation. Kinetics and Catalysis, 38(6), 848-854 (1997).
- 14. IJ Aray. Influencia del Método de preparación y de la temperatura de calcinación sobre catalizadores de Ni^{x+}/MgO-La₂O₃", **Tesis de Grado**, Universidad de Los Andes, Mérida Venezuela, pags. 35-42, 43-44 (2000).
- 15. A Rodríguez, F Rueda, R Casanova, J Mendialdua, S González-Cortés, I Aray, O Delgado, F Imbert, S Rodulfo-Baechler, H Del Castillo. Caracterización másica y superficial del catalizador NiO/MgO-La₂O₃. Influencia de la composición del soporte. **Revista latinoamericana de Metalurgia y Materiales, 23(2)**, 72-77 (2003).
- 16. M Romero, C Rollo, A Monzón, R Trujillano, F Labajos, V Rives. Actas XVI Simposio Iberoamericano de Catálisis, Cartagena de India, Colombia, volumen I, 567 (1998).
- MP Rosynek, DT Magnuson. Preparation and Characterization of Catalytic Lanthanum Oxide. Journal of Catalysis, 6, 402-413 (1997).
- 18. S González-Cortés, J Orozco, B Fontal. Transformación Oxidativa de Metano sobre catalizadores de 1,5mol%

 Sr^{2+}/La_2O_3 soportados en Níquel. Applied Catalysis, A: General, 213(2), 259-271 (2001).

- JC Hernández. Efecto de la selectividad de forma en la transformación de los cresoles. Tesis de Post-Grado, Universidad de Los Andes, Mérida Venezuela, pags. 40-46 (2001).
- 20. J Rodríguez, M Pérez, T Jirsak, L González, A Maiti, J Larese. DeNO_x Reactions on MgO(100), $Zn_xMg_{1-x}O(100)$, $Cr_xMg_{1-x}O(100)$, and $Cr_2O_3(0001)$: Correlation between Electronic and Chemical Properties of Mixed-Metal Oxides. **Journal of Physical Chemistry B**, **105(23)**, 5497-5505 (2001).
- 21. S González Cortés, J Orozco, JB González. Acta XVI Simposio Iberoamericano de Catálisis, volumen II, 1315 (1998).
- 22. G Gallego, C Batiot-Dupeyrat, J Barrault, F Mondragón. Producción de hidrógeno y nanotubos de carbono por descomposición de metano sobre Ni°/La₂O₃ obtenido a partir de la perovskita LaNiO_{3-δ}. Revista de la Facultad de Ingeniería de la Universidad de Antioquia, 44, 7-19 (2008).