Simulación del proceso de endulzamiento de gas natural usando la solución acuosa de monoetanolamina

Simulation of the natural gas of sweetening process by aqueous solution of monoethanolamine

Tixi, Hernan^{1*}; Barahona, Natalia¹; Garmendia, Henry²; Ramírez, John²

¹Escuela Superior Politécnica Chimborazo. Riobamba-Ecuador ²Escuela de Ingeniería Química. Facultad de Ingeniería Universidad de Los Andes, Mérida, Venezuela *hernantixi@yahoo.es

Resumen

En este trabajo, se presenta una investigación teórica de la absorción y desorción simultánea de CO_2 y H_2S presentes en el gas natural usando soluciones acuosas de monoetanolamina (MEA). Los componentes ácidos del gas natural reaccionan con la solución básica de alcanolamina a través de una reacción reversible exotérmica en un absorbedor y posteriormente se procede a regenerar la solución acuosa de amina. Se ha investigado el uso del solvente MEA para el endulzamiento de gas natural y se ha utilizado el programa de simulación de procesos ASPEN PLUS. El modelo termodinámico utilizado es Amine Package (Kent y Eisenbergmodel). Se estudiaron los efectos de la temperatura, tasa de recirculación y la concentración de amina pobre en función de la eficiencia de absorción de CO_2 y H_2S se obtuvieron resultados satisfactorios, cuando aumenta el flujo y la concentración de amina pobre, la absorción de CO_2 y H_2S también aumentan. Con una mejora de la temperatura de la amina de entrada en el absorbedor. La concentración de CO_2 en el gas limpio puede verse muy influenciada por el número de etapas, mientras que para la concentración de H_2S en el gas limpio, la cantidad de etapas desempeña un papel menor. El software ASPEN PLUS representa una buena herramienta para el cálculo y el análisis de sensibilidad de las variables de operación del proceso.

Palabras clave: Proceso de endulzamiento, gas natural, MEA, simulación.

Abstract

In this work, we present a theoretical research of the absorption and desorption of simultaneous CO_2 and H_2S present in the natural gas using aqueous solutions of monoethanolamine (MEA). The acid components of natural gas react with the basic solution of alkanolamine through a reversible reaction exothermic in an absorber and subsequently proceeded to regenerate the aqueous solution of amine. It has been investigated the use of the solvent MEA for the sweetening of natural gas and has used the program of process simulation ASPEN PLUS. The model thermodynamic used is Amine Package (Kent and Eisenberg model). We studied the effects of temperature, rate of recirculation and the concentration of amine poor depending on the efficiency of absorption of CO_2 and H_2S . Satisfactory results were obtained when increases the flow and the concentration of amine poor, the absorption of CO_2 and H_2S also increase. With an improvement of the temperature of the amine of entry into the absorber, CO_2 and H_2S penetrate the upper stages of the absorbent and reduce the absorption of acid gases in the absorber. The concentration of CO_2 in the clean gas can be greatly influenced by the number of stages, while for the concentration of H_2S in the gas clean; the amount of stages plays a minor role. The software ASPEN PLUS represents a good tool for the calculation and the sensitivity analysis of the variables of operation of the process.

Key words: Sweetening process, natural gas, MEA, simulation

Introducción

El gas natural tiene un papel importante en el reciente desarrollo mundial y además es un recurso no renovable. Este es un combustible fósil que proviene de los yacimientos de gas conteniendo metano, etano y otros hidrocarburos, así como también nitrógeno, agua, CO₂ y H₂S (Rojeyy col., 1997). De acuerdo con el contenido de CO2 y H2S en el gas natural, este puede referirse como un gas amargo. Estas sustancias son indeseables, ya que, si el H2S está presente en el gas natural entonces causa una severa corrosión a las tuberías (gasoductos), turbinas, compresores y otros equipos (DuPart y col., 1963). También el H₂S es una sustancia química tóxica y venenosa, si se expone al medio ambiente por fuga causa daño al ser humano y animales que estén a los alrededores. Por otro lado, el gas natural con altos contenido de CO₂ disminuye su poder calorífico y también es responsable de los problemas de corrosión ya que, forma ácido carbónico cuando reacciona con el vapor de agua. Una vez eliminado estas sustancias (CO₂ + H₂S) al gas se le denomina gas dulce (Serrano ycol., 2004)

Generalmente el gas natural que contiene estos gases ácidos, por ejemplo, H_2S y CO_2 , necesita ser eliminados para tener un valor comercial y cumplir con las especificaciones para ser transportado por gasoductos. Arnold y Stewart (1989) señalan que la venta de gas natural está restringida al contenido de H_2S menor de 4 ppm y para el CO_2 de 2%. Debido a ello, se hace necesario realizar un tratamiento de endulzamiento para que el gas natural entre en especificación y pueda transportarse por gasoductos.

Los procesos de endulzamiento de gas natural surgen con el objetivo de remover estos gases ácidos de la corriente de gas, por ejemplo, absorción química, uso de adsorbentes y métodos de absorción física. Sin embargo, el endulzamiento de gas por amina se considera el proceso más popular entre los métodos de endulzamiento del gas natural. De hecho, el proceso de endulzamiento del gas natural por amina tiene varias ventajas, es un proceso continuo y la capacidad para regenerar el solvente (Tennyson y col., 1977).

Las aminas son compuestos derivados del amoniaco, son bases orgánicas donde uno, dos o tres grupos alquilo pueden sustituir los hidrógenos de la molécula de amoniaco para dar aminas primarias, secundarias y terciarias, respectivamente. La monoetanolamina (MEA) es una amina primaria y ampliamente utilizada en los procesos de endulzamiento de gas natural. También se utiliza para eliminar el CO_2 de los gases de combustión y recibe una amplia atención para la reducción de gases de efecto invernadero.

El propósito de este trabajo es simular el proceso de endulzamiento de gas natural usando monoetanolamina (MEA). Se utiliza la herramienta computacional ASPEN PLUS para el presente estudio de simulación. A partir de un caso base se evalúa los parámetros más importantes que afecte al proceso de endulzamiento y se presenta un predimensionamiento de las columnas de absorción y de regeneración.

El presente artículo está desarrollado en 5 secciones: la primera, presenta la descripción del proceso de endulzamiento

de gas natural con amina, la segunda es el caso de estudio: la simulación del proceso de endulzamiento usando ASPEN PLUS, la tercera presenta el análisis de sensibilidad de las variables de operación, la cuarta, los resultados con su respectivo análisis y, por último, se presentan las conclusiones de este estudio.

Descripción del proceso de endulzamiento de gas natural usando amina

La tecnología del uso de alcanolaminas para la eliminación de sulfuro de hidrógeno y dióxido de carbono del gas natural se ha utilizado durante décadas. Desde los años 60 y 70 varias aminas han llegado a ser de uso general, sin embargo, la limitada información ha sido reportada en la literatura sobre la amina que mejor se adapte a un servicio en particular. En la Figura 1 se muestra el diagrama de flujo básico de una unidad de endulzamiento de gas natural usando amina (Kohl y col., 1985).

Figura 1. Diagrama de flujo del Proceso de Endulzamiento de gas natural.

El proceso de endulzamiento se lleva a cabo en un sistema compuesto fundamentalmente por una torre absorbedora y una torre regeneradora. La primera unidad es donde se efectúa la absorción del gas ácido, es decir, donde se obtiene el gas dulce o tratado. La segunda unidad se hace necesaria para recuperar y reacondicionar la amina y realimentarla al ciclo.

El gas amargo entra a un separador con la finalidad de remover cualquier líquido, condensado o sólido que contenga. La corriente de la parte superior del separador entra a la columna de absorción por la parte inferior y por la parte superior entra la solución acuosa de amina o amina pobre y se ponen en contacto ambas corrientes y salen dos corrientes, por el tope un gas limpio o gas dulce y por la parte inferior un líquido denominada amina rica. Esta amina rica contiene absorbido el gas ácido (CO₂+ H₂S) la unidad absorbedora trabaja a alta presión. A esta corriente se debe reducir la presión, para esto se utiliza una válvula, la corriente de salida es una mezcla gas + líquido, la cual entra a un separador donde se separa por la parte superior un gas y por la parte inferior una corriente líquida de amina rica. Para separa el CO_2 y H_2S de la amina se pasa por un intercambiador de calor de amina rica/pobre con la finalidad de precalentar la alimentación que va a la columna regeneradora. En esta columna regeneradora se separa por el tope el gas ácido y por el fondo una amina pobre. Esta amina pobre intercambia calor en el intercambiador de calor y va a un punto de mezcla donde se combina con agua fresca. La corriente de mezcla pasa por enfriador y una bomba para elevar la presión y entrar de nuevo a la columna de absorción.

Caso de Estudio

A continuación se específica el método seguido para el desarrollo de la simulación de endulzamiento del gas natural usando solución acuosa MEA. El método contó con 3 fases: simulación caso base usando ASPEN PLUS 11.1, análisis de sensibilidad de las variables operacionales y el pre-dimensionamiento de las columnas de absorción y regeneración.

3.1 Construcción del proceso de endulzamiento usando ASPEN PLUS

Es el conjunto de datos necesarios para el desarrollo de las actividades de simulación de endulzamiento de gas natural con la solución acuosas de MEA. El proceso que se simula es una instalación típica (Martínez 1995) para endulzamiento de gas natural y consiste en la remoción del CO_2 y H₂S, utilizando la solución de MEA a concentraciones preestablecidas. Este proceso se completa con la posterior regeneración de la amina utilizando una torre de destilación. El modelo termodinámico utilizado es Amine Package (Kent y col, 1976)

Fig. 2. Diagrama de flujo del proceso de endulzamiento de gas natural usando MEA.

La Figura 2 presenta el esquema del proceso desarrollado en ASPEN PLUS 11.1(ASPEN PLUS 2002). El esquema muestra que el gas primeramente, pasa por un separador bifásico (B1 *Flash*) para remover el líquido que contenga antes de su ingreso al absorbedor. El gas natural ingresa por el fondo del absorbedor (B2 *Radfrac*) que es una torre de platos y en sentido contrario la solución acuosa de amina pobre (concentración muy baja de H_2S y CO_2).

El gas purificado o gas dulce sale por la cabeza del absorbedor (B2) y la amina rica en H_2S y CO_2 sale por la base del mismo v se envía a la sección de regeneración. Dado que la regeneración de la solución de amina se favorece a bajas presiones y altas temperaturas, se coloca una válvula de nivelación (B3Valve) en la línea de fluio de la amina. que cumple la función de disminuir la presión hasta 5 o 4 kg/cm^2 . Esto permite separar parte del CO₂ de la amina en un segundo separador (B4Flash). A continuación el intercambiador de calor amina AR/AP (B5-B7Heater) cumple la función de precalentar la amina rica en H₂S y CO₂ antes de su ingreso al regenerador, por intercambio de calor con la amina pobre que viene del mismo. El regenerador (B6Radfrac) es una torre de platos donde la solución de amina rica desciende en dirección contraria a los vapores de extracción ascendentes que consisten sobre todo en vapor de agua. Si en el regenerador se supera la temperatura de descomposición de la amina, la misma no podrá ser recuperada y reutilizada. Finalmente, en el mezclador (B8Mixer) se combina la amina pobre que proviene del regenerador con amina o agua de reposición. La salida esta unidad (B8) se envía a un enfriador (B10 Heater) y luego se aumenta la presión usando una bomba (B11 Pump) para obtener la corriente de amina pobre que entra de nuevo a la columna de absorción. Para converger la corriente de reciclo durante la simulación se debe minimizar el error entre las variables de la corriente 4 y 18.

3.2 Alimentación del gas natural amargo

Se tomó como base un gas cuya composición y condiciones se muestran en las Tabla 1 y 2, respectivamente. (Martínez 1995)

Compuesto	Fracción
	Molar
C1	0.8608
C2	0.0620
C3	0.0203
IC4	0.0039
NC4	0.0053
IC5	0.0022
NC5	0.0013
C6	0.0005
C7	0.0007
C8	0.0001
C9	0.0001
CO_2	0.0346
H_2S	0.0010
H_2O	0.0020
N_2	0.0052

Tabla 1. Composición del gas natural

Tabla 2. Condiciones de entrada del gas natural

Propiedad	Valor	Unidad
Flujo	50	MMscfd
Presión	28.70	bar
Temperatura	30	٥C

3.3 Especificación de las unidades

En la Figura 3 se presenta las especificaciones de las operaciones unitarias utilizadas en ASPEN PLUS para modelar el proceso de endulzamiento.

Fig. 3. Diagrama de flujo del proceso de endulzamiento de gas natural usando MEA.

3.4 Análisis de sensibilidad

El análisis de sensibilidad se realizó solamente en la columna de absorción. Se evaluó el flujo, la presión y la composición de H_2S y CO_2 del gas amargo, así como también la temperatura y composición de amina pobre; todo en función de la eficacia de remoción de H_2S y CO_2 del gas natural. En la Figura 4 se muestra el procedimiento para realizar el análisis de sensibilidad en ASPEN PLUS para la columna de absorción.

3.4 Predimensionamiento de las columnas de absorción y regeneradora

Se utilizó la herramienta Tray y RateSizing (dimensionamiento del plato) con el fin de estimar:

- El diámetro de la columna usando Traysizing.
- La longitud del vertedero.
- La velocidad de desagüe del vertedero.

Con respecto al uso de Ratesizing se procedió a introducir el diámetro de la columna calculada anteriormente y además se le suministro cierta geometría del plato como altura del vertedero, altura del claro, factor de espumeo (calculados para que el $\Delta P = 8-10 \text{ mmHg}$) (Treybal1980). Después del cálculo se verifica que el porcentaje de inundación de la torre debe estar en un rango entre 70 y 85 % y la caída de presión entre platos en el valor antes mencionado (Ver Tabla 3).

Fig. 4. Diagrama de flujo del proceso de endulzamiento de gas natural usando MEA

Tabla 3. Especificación del pla	ito
---------------------------------	-----

Especificación	Valor
Factor de espuma	0.7
Altura vertedero (Weir heights)	4 in
Claro (Clearance)	3.5 in
Ancho tope bajante (width at top)	5 in
Diámetro de la perforación	½ in
Método de cálculo inundación	Glitsch

Resultados

4.1Balance de materia y energía

En la Figura 5 se muestra en forma resumida los valores más importantes de la simulación usando la solución acuosa de MEA.

La Tabla 4 presenta los resultados por corriente del balance de materia y energía en estado estacionario. Los puntos a destacar son los siguientes:

Figura 5. Resultados del balance de materia y energía

En el absorbedor se redujo el contenido de CO_2 de 3.5 % a 0.1 % y de H₂S de 11 ppm a trazas. Esto corresponde a un 97.1 % de recuperación de CO₂ y 99.99 % de recuperación de H₂S que sale por el fondo de la columna con la amina rica. Con respecto a la relación mol de gas ácido (H₂S+CO₂)/mol MEA fue de 0.431.

 En el regenerador se logra concentrar el gas ácido en 28.9 % el CO₂ y 97 ppm el H₂S con un rendimiento del proceso de endulzamiento del 95.1 % para el CO₂ y del 100 % para el H₂S.

· La pérdida de agua por el tope de la columna regeneradora se compensa con la corriente 15 que representa la reposición de agua para el sistema de solución acuosa de amina.

Circulación Gas Amina Gas Amina Gas Natural Pobre Dulce Rica ácido amina 1 4 5 6 11 12 ⁰C 114.6 т 30 36 36. 54 98.4 1.57 P bar 27. 28 26 27 1.3 Vapor Frac 0 Mole Flow 2490.22 3735.33 2408.91 3816.64 282.94 3533.7 kmol/hr Mass Flow 47850.19 78906.1 44231.37 82524.89 7230.02 75294.82 kg/hr Volume 2118.23 77.99 2190.06 82.59 6425.17 81.31 Flow cum/h Enthalpy -254.40 -52.34 -44.46 -262.28 -19.14 -235.23 MMkcal/hr Components Mole Flow kmol/hr 27.50 CO_2 86.14 26.52 3.277 109.39 81.88 H_2S 0.0270 0.027 0.027 0 0 N_2 12.95 0 12.95 0 0 0 H₂O 4.98 3455.175 6.55 3453.60 200.94 3252.67 MEA 253.636 0.013 253.62 0.09 253.53 C1 2145.87 2145.87 0.004 0 0 0 C2154.61 0 154.61 0 0 0 C3 50.54 0 50.54 0 0 0 IC4 9.71 0 9.71 0 0 0 NC4 13.19 0 13.19 0 0 0 5.48 0 0 IC5 0 5.48 0 NC5 3.24 0 3.24 0 0 0 1.241.24 C6 0 0 0 0 C7 1.74 0 1.74 0 0 0 C8 0.25 0 0 0 0 0.25

Tabla 4. Balance de materia y energía.

49

4.2Tasa de recirculación de amina

En la Tabla 5 se presenta los resultados de las corrientes 4 y 18. Estas corrientes deben convergen en valores de presión, temperatura y flujos molares ya que, es la corriente de reciclo. Se puede observar que ambas corrientes convergen satisfactoriamente.

4.3Carga calorífica y de trabajo en el proceso de endulzamiento

La planta de endulzamiento de gas natural requiere de fuentes de energía y trabajo para desarrollar un adecuado funcionamiento operacional. Estas fuentes son el intercambiador de calor amina/amina, el condensador, el rehervidor, el enfriador y la bomba. La Tabla 6 muestra los resultados de las cargas caloríficas y del trabajo.

-		-
	4	18
	Amina Pobre	Reciclo amina pobr
T ⁰C	36	35,1
D1	20	20

Tabla 5. Convergencia de la corriente de reciclo 4 y 18.

		10
	Amina Pobre	Reciclo amina pobre
T ⁰C	36	35,1
P bar	28	28
Vapor frac	0	0
Mole flowkmol/h	3735,33	3735,903
Massflow kg/hr	78906,07	78937,507
Volumen flow cum/hr	77,96	77,949
EnthalpyMMkcal/hr	-254,401	-254,544
	Flujo	Molar kmol/h
CO2	26,519	27,502
H2S	0	0
N2	0	0
H2O	3455,175	3454,867
MEA	253,636	253,533

Tabla 6. Calor y trabajo en los equipos de la unidad endulzamiento

	Q _{AR/AP} 14	Q c 20	Q _R 19	Q _E 21	W _в 22
Q (MMkcal/hr)	-3,151	3,506	-8,271	2,474	-
Ti ⁰ C	54	107,92	113,98	69,36	-
Tf ⁰ C	96	98,40	114,60	34,00	-
W (kW)	-	-	-	-	85,97

4.4Intercambiador de calor amina rica/pobre (AR/AP)

Para la integración de calor la temperatura de salida de la solución acuosa de amina rica está limitada por la temperatura máxima a la cual se puede llevar la solución rica a la entrada del regenerador. En este caso se ha seleccionado un valor de 96 °C para evitar que la solución no libere los gases ácidos dentro del intercambiador de calor y genere la corrosión en ese tramo de tubería (Martínez 1995). En la Tabla 7 se muestra los resultados de temperatura del inter-

Revista Ciencia e Ingeniería. Vol. 40, No. 1, diciembre-marzo, 2019

cambiador de calor AR/AP.

Se requiere un análisis térmico para establecer la recuperación del calor del proceso y para evitar cualquier transferencia de calor a través del cruce de temperatura por el uso inadecuado de las utilidades o corrientes de proceso.

Tabla 6. Calor y trabajo en los equipos de la unidad endulzamiento

	Lado frío		Lado caliente	
	t1	t2	T1	T2
T ⁰C	54	96	114,6	71

El calor se puede añadir a la corriente fría de amina rica a través de un intercambiador de calor como se muestra en la Figura 9(equipo B5/B8). Tal como lo describe Smith (2005), el diseño de la red del intercambiador de calor para la máxima recuperación de energía puede representarse mediante un diagrama de malla (análisis pinch). En la Figura 9 se muestra el perfil de temperatura del lado frío y del lado caliente observando que no presenta un cruce de temperatura. La recuperación máxima entre la corriente caliente y la corriente fría (amina rica) a través del intercambiador de calor es de 3.15 MMkcal/h y se obtiene a una temperatura mínima de aproximación (ΔT_{min}) de 17 °C.

Figura 9. Perfil de temperatura del intercambiador de calor

4.5Columna de absorción

La Tabla 7 muestra los resultados del cierre del balance de materia y energía de la columna de absorción. Como puede verse el cierre del balance de materia y energía es satisfactorio.

Tabla 7. Cierre del balance de materia y energía de la columna absorción

	Total	In	Out	Rel. diff
Flujo Molar	kmol/hr	6225.558	6.23E+03	1.46E-16
FlujoMásico	kg/hr	126756.261	1.27E+05	2.30E-16
Entalpía	MMkcal/hr	-306.739	-3.07E+02	-6.01E-07

En el proceso de absorción sólo el H_2S y CO_2 cambia de fase, es decir, el soluto en fase gas pasa a la fase líquida. La Tabla 8 muestra las fracciones de recuperación de los

componentes en el tope y fondo de la columna. Se puede observar que existe un cambio en la corriente 6 del fondo de la columna, se aprecia que los solutos H_2S y CO_2 se concentran en un 97.1 % para el CO_2 y en un 99.99 % para el H_2S . Pero a su vez, no existe un arrastre apreciable de la solución acuosa de amina por el tope y de igual forma no existe un arrastre de hidrocarburos por el fondo de la columna. Por lo tanto, las concentraciones de H_2S y CO_2 presentes en el tope de la columna son bajas, mientras que por el fondo de la columna sale una amina rica en solutos de H_2S y CO_2 , se mide por la relación de absorción mol de gas ácido $(H_2S + CO_2)/mol MEA de 0.431$.

Los perfiles representan los cambios que sucede internamente dentro de la columna de absorción y representa el equilibrio de etapa por etapa. Estos perfiles son:

La Figura 10(a) muestra el perfil de temperatura en función del número de etapas de la columna de absorción. La etapa 1 representa el tope de la columna mientras que la etapa 20 representa el fondo de la columna, es decir, el tope la salida del gas dulce y el fondo la salida de amina rica. Se observa que la temperatura aumenta hacia abajo en la columna; la causa es el calor de absorción desprendido por el paso del soluto de la fase gaseosa (H₂S+CO₂) a la fase líquida. El calor desprendido aumenta el calor de la corriente líquida que recibe por la interface la mayor parte del calor absorbido. La temperatura máxima es de 64.2 °C en la etapa 18 y el descenso de la temperatura hasta el fondo de la columna se debe a que la amina rica es enfriada por el gas natural de entrada.

Tabla 8. Fracción de recuperación en la columna de absorción

	Торе	Fondo
Componentes	5	6
CO ₂	0.02908	0.97092
H ₂ S	5.31E-05	0.99995
N_2	1	2.66E-06
H2O	0.00189	0.99810
MEA	5.23E-05	0.99995
C1	1	1.64E-06
C2	1	4.56E-07
C3	1	5.74E-08
IC4	1	3.41E-09
NC4	1	5.01E-08
IC5	1	5.00E-09
NC5	1	2.70E-08
C6	1	1.35E-08
C7	1	4.73E-09
C8	1	1.42E-09
C9	1	4.48E-10

La figura 10(b) muestra el perfil de presión en función del número de etapas de la columna de absorción. Se observa que es en forma lineal y aumenta a medida que se aleja del tope de la columna. La columna sufre una caída de presión de 0,3 bar.

La variación de los caudales de vapor y líquido dentro de la columna se muestra en la Figura 10(c). Se observa que

estos flujos no son constantes, esto se debe a que el proceso de absorción de solutos H_2S y CO_2 hace incrementar el flujo de líquido. Las curvas de vapor y líquido son de forma S observándose mayor absorción en los platos del fondo.

El caudal de vapor que entra por el fondo de columna disminuye mientras que el caudal de líquido que entra por el tope aumenta. En consecuencia, esta disminución en la fase vapor se debe a que los solutos H_2S y CO_2 se transfiere al caudal de líquido. Por lo tanto, el gas dulce sale a concentraciones pequeñas de H_2S y CO_2 mientras que la amina rica sale con una alta concentración de H_2S y CO_2 .

La relación debe ser mayor de 1 (L/V > 1) para cumplir con la definición de absorción, como puede observarse esta para nuestro caso el valor de L/V es de 1.5 y no es constante a lo largo de las etapas. La variación de relación L/V de 1.53 en el fondo hasta 1.55 en el tope de la columna indica que en los platos del fondo hay una mayor absorción de soluto. En la Figura 10(d) se muestra la relación L/V en función del número de etapas.

Figura 10. Perfiles de la columna de absorción.

En la Figura 11(a) se muestra el perfil de composición molar del H_2S y CO_2 en fase vapor. Se observa que la absorción del CO_2 es lenta con respecto a la del H_2S que es más rápida, esto indica que la absorción de CO_2 depende del número de platos mientras que para el H_2S no es sensible. La concentración de H_2S y CO_2 que sale por el tope de la columna está por debajo de 4 ppm en H_2S y 0.2 % en CO_2 .

La Figura 11(b) muestra la composición molar de hidrocarburos en función de los números de etapas. La cantidad de metano y etano absorbidas en el líquido, aunque pequeñas, se concentra en el tope de la columna. Los hidrocarburos pesados de C_4 a C_9 no se absorben en la fase líquida, su composición es muy pequeña y se concentran en el tope de la columna.

Con respecto a la fase líquida la Figura 11(c) muestra la absorción de los solutos H_2S y CO_2 en la fase líquida en

función del número de etapas de la columna. Se observa que la absorción de CO_2 es lenta con respecto a la del H_2S . La amina pobre atrapa la mayor cantidad de gas ácido (H_2S + CO_2). La concentración de CO_2 en la amina rica es de 2.9 % y todo el H_2S se absorbe; la razón mol de gas ácido por mol de amina rica es de 0.431.

Figura 11. Perfiles de Composición molar de la columna de absorción.

4.6 Columna de regeneración

En la Tabla 9 se muestra la convergencia del balance de materia y energía. La última columna representa la diferencia relativa la cual nos indica una convergencia excelente para esta operación unitaria.

Las fracciones de recuperación representa la distribución de los componentes en el tope y fondo de la columna regeneradora. La Tabla 10 muestra los valores de las fracciones de recuperación tope y fondo de la columna. La recuperación de CO_2 por el tope es de 74.86 % y de H_2S es de 99.99%.

Tabla 9. Cierre del t	alance de materia y	energía de la co	lumnaregenerado-
	ra		

	Total	In	Out	Rel. diff
Flujo Molar	Kmol/hr	3816,639	3816,639	0
Flujo Másico	Kg/hr	82524,838	82524,838	-1,64E-14
Entalpía	MMkcal/hr	-259,127	-259,1295	6,18E-06

Tabla 10. Fracción de recuperación en la columna regeneradora

Comp	Tope 11	Fondo 12	Comp	Tope 11	Fondo 12

CO2	0,74857	0,25142	C3	1	1,00E-35
H2S	0,99997	2,75E-05	IC4	1	1,00E-35
N2	1	1,00E-35	NC4	1	1,00E-35
H2O	0,05818	0,941818	IC5	1	1,00E-35
MEA	0,00035	0,999646	NC5	1	1,00E-35
C1	1	1,00E-35	C6	1	1,00E-35
C2	1	1,00E-35	C7	1	1,00E-35

Por el fondo se recupera la amina MEA y esta corriente representará la amina pobre que se recirculará a la columna de absorción, los porcentajes molares son 8 % CO₂ y nada de H₂S. La relación molar moles gas ácido/ mol de amina MEA es 0.108.

La columna regeneradora presenta también los perfiles de temperatura, composición molar del H_2S y CO_2 para el vapor y líquido y además los flujos molares de líquido y vapor. La Figura 12 muestra en una forma resumida los perfiles de la columna en función del número de etapas.

La Figura 12 (a) muestra el perfil de temperatura en función de los números de etapas. Se observa que la temperatura de fondo o rehervidor tiene un valor de 115 $^{\circ}$ C. Este valor está en el intervalo de 107.2 – 126.6 $^{\circ}$ C.

La Figura 12 (b) representa la composición molar del vapor para el H_2S y CO_2 . Se observa que el H_2S y CO_2 se concentran rápidamente en el tope de la columna, mientras que por el fondo sale la amina contaminada con bajo CO_2 y trazas de H_2S . Esta corriente va a representar la amina pobre que se recirculara a la columna de absorción.

La Figura 12 (c) representa el flujo molar de vapor y líquido dentro de la columna de destilación. Se puede observar que el flujo de líquido permanece constante entre etapas y de la misma manera para el flujo de vapor. Por tanto, si dividimos L/V entre las etapas se puede obtener un L/V de 5.3.

La Figura 12 (d) muestra la composición molar en fase líquida para los componentes H_2S y CO_2 . Se observa un máximo justo en el plato de alimentación, por encima del plato N=2 la composición de H_2S disminuye rápidamente y de CO_2 disminuye lentamente. Por el tope sale el gas ácido (H_2S+CO_2) y por el fondo sale la amina pobre o amina contaminada por el gas ácido. Figura 12. Perfiles de la columna regeneradora.

4.7Análisis de sensibilidad

En la Figura 13 se presenta la fracción de recuperación de CO_2 removido en función del caudal de solución de MEA a diferentes concentraciones que ingresa al absorbedor, por encima del caudal mínimo (caudal que logra obtener un gas natural dulce por debajo de $< 0.5 \% CO_2$). Si bien para cada situación en particular el simulador permite encontrar el caudal mínimo de solución de MEA que se debe alimentar al absorbedor para extraer la cantidad de CO_2 deseada, técnicamente es necesario trabajar con caudales de solución de MEA por encima del caudal mínimo.

Como puede observarse en la Figura 13 a medida que aumenta el caudal de la solución de MEA aumenta la cantidad de CO₂ extraído. Para concentraciones por encima de 20 %m de MEA se utiliza bajos flujos de amina MEA, mientras que a concentraciones por debajo de 20 %m aumenta el consumo de amina MEA. Sin embargo, el caudal de solución de MEA y su concentración a ser utilizada surge de un estudio económico y técnico en la etapa de regeneración de la amina, dado que el tratamiento de grandes caudales de amina podría resultar antieconómico al tener que aumentar el tamaño del reboiler del regenerador y la amina MEA podría generar problemas de corrosión.

Figura 13. Flujo de Amina MEA a diferentes concentraciones en función de la fracción de remoción de CO₂

Figura 14. Flujo de Amina MEA a diferentes concentraciones en función

Revista Ciencia e Ingeniería. Vol. 40, No. 1, diciembre-marzo, 2019

de la fracción de remoción de H₂S

En la Figura 14 se presenta la fracción de recuperación de H_2S removido en función del caudal de solución de MEA a diferentes concentraciones, por encima del caudal mínimo (caudal que logra obtener un gas natural dulce por debajo de < 4 ppm H_2S). Si bien para cada situación en particular el simulador permite encontrar el caudal mínimo de solución de MEA que se debe alimentar al absorbedor para extraer la cantidad de CO₂ deseada, técnicamente es necesario trabajar con caudales de solución de MEA por encima del caudal mínimo.

En la Tabla 11 se muestra los flujos de amina MEA calculados por el simulador para logra la especificación del gas natural dulce de $H_2S \le 4$ ppm y $CO_2 < 2\%$ mol.

A medida que aumenta la concentración de la solución acuosa de amina MEA el flujo de amina disminuye.

% peso MEA	Flujo de Amina kmol/h	Y _{CO2} (%)	Y _{H2S} (ppm)
15	3200	0,002 (0,2)	5
17	2900	0,002(0,2)	4
20	2750	0,002(0,2)	3
23	2650	0,001(0,1)	2
25	2550	0.001(0.1)	4

Tabla 11. Flujo de amina minimo.

Figura 15. Flujo de amina MEA a diferentes concentraciones con respecto a la relación molar mol de gas ácido/mol MEA.

La Figura 15 muestra la variación de flujo de la solución acuosa de amina a diferentes concentraciones en peso en función de la relación molar moles de gas ácido (H_2S+CO_2) por mol de amina MEA presente en el fondo de la columna, es decir de la corriente de amina rica.

En la figura se observa que esta relación disminuye en forma lineal de pendiente negativa a medida que el flujo de amina aumenta. Este hecho es importante ya que esta relación representa la cantidad de soluto removido de la columna de absorción y para el caso de MEA recomienda una relación 0.45 - 0.52.

Para obtener bajas relaciones de mol gas ácido/mol

MEA el caudal de amina MEA debe aumentar pero se debe tener cuidado que no arrastre o absorba fracciones de hidrocarburos.

4.8Predimensionamiento de la columna

Se desea obtener a través del uso de la herramienta ASPEN PLUS 1.11 con las secciones "Traysizing" y "Trayrate", el cálculo de los parámetros dimensionables de la torre.

Los resultados de la simulación de la columna de absorción se presentan a continuación. Para el caso "Traysizing" se revisa el diámetro de la columna, la relación área bajante/área columna, velocidad por el bajante y longitud del vertedero. Todos los diseños satisfacen los requerimientos o especificaciones para un adecuado funcionamiento operacional de la columna. En la Tabla 12 muestra los resultados para este caso.

Tabla	12.	Resultados	del	Traysizing.
-------	-----	------------	-----	-------------

Parámetros	Unidad	MEA
Tipo de platos		Sieve
Número de pasos		1
Número de platos		20
Espaciado de plato	m	0.6096
Porcentaje de inundación	%	0.8
Método de cálculo inundación		Glitsch
Factor de espuma		0.83
Plato de cálculo		18
Diámetro de la columna	m	1.6181
Área bajante/Área columna		0.1066
Velocidad bajante	m/s	0.1057
Longitud vertedero	m	1.1970
Área columna	m ²	2.0564
Área activa	m ²	1.6179
Área del bajante	m ²	0.2162

Figura 16. Esquema de las áreas de un plato.

El diámetro de la columna calculado está por encima de 1m, por lo cual se especifica que el espaciado de plato debe ser de 600 mm. La relación área bajante/ área columna está en un valor aceptable ya que este valor corresponde a 12 % del área de la columna. La longitud del vertedero corresponde al 75 % del diámetro de la columna.

La velocidad por el bajante está dentro del valor correspondiente al intervalo sugerido de 0.0305 - 0.2135 m/s.

La Figura 16 muestra la relación área activa, área de bajante con respecto al área total de la columna.

Para corroborar el valor de Ad/Ac se presenta la Figura 17 tomada de la literatura (Matthew Van Winkle, pág. 585). Los valores recomendados son:

Ad/Ac = [0.08 - 0.12] y Lw/Dc = [0.68 - 0.76].

Figura 17. Esquema de las áreas

La relación Ad/Ac con respecto a la relación Lw/Dc fue 0,1066 y 0,7398.

En la Tabla 13 se presentan los valores de los parámetros utilizados por la simulación con la finalidad de calcular el factor de inundación, caída de presión por etapas y caída de presión total de la columna.

Sección de platos			
Etapa inicio	1	Etapa final	
Tipo de Plato	Sieve	Número de pasos	
	MEA		
Geometría del plato	IVIL/ I		
Diámetro (m)	1.6		
Espaciado platos (m)	0.6096		
Espesor plato	10 GAUGE		
Altura vertedero			
h _w (mm)	76.2 (3 in)		
Parámetros de diseño			
Factor de espuma	0.83		
Factor de sobrediseño	1		
Eficiencia sección total	1		
Método del cálculo inundación	Glitsch		
Plato perforado			
Diámetro perforado(m)	0.0127		
Fracción área hueco a área activa	0,12		
Bajante		1	
Altura del claro (mm)	38.1]	

Tabla 13. Parámetros del plato.

Ancho del tope (m)	0.2647
Ancho del fondo (m)	0.1557

La Tabla 14 muestra los resultados de la simulación. Todos los parámetros obtenidos satisfacen los requerimientos de la columna.

El factor de inundación está dentro del intervalo de 70 - 85 % y en especial para sistema espumoso que recomienda un factor de 0.70.

La caída de presión por etapas o platos va desde un 0.008 - 0.009 bar el cual está un poco por arriba del valor recomendado de 0.007 bar (0.1 psi) mientras que la caída de presión de la columna esta alrededor de 0.2 bar.

Los bajantes (downcomer) tiene una altura de backup de líquido que es menor que la mitad de la suma del espaciado del plato y altura de vertedero (S+hw) como se recomienda, el cual contribuye a asegurar de que no ocurra inundación.

La velocidad de líquido por los bajantes está dentro del rango recomendado 0.0305 – 0.2135 m/s.

En la Figura 18 se muestra el esquema de un plato con sus valores con la finalidad de saber su geometría.

Tabla 14. Parámetros del plato

Resumen(Tray Rating)	Unidad	MEA
Etapa de comienzo de sección:		1
Etapa de final de sección		20
Máximo factor de inundación:		0.7119
Etapa:		18
Caída de presión por etapa:	bar	0.00958
Panel:		
Caída de presión de la sección:	bar	0.1899
Resultados del bajante (Downcomer)		
Maximumbackup/Espaciado de bandeja:		0.4871
Etapa:		19
Localización:		
Backup:	m	0.2969
Máxima velocidad/ de Diseño:		
Etapa:		19
Localización:		
Velocidad:	m/s	0.1069

Revista Ciencia e Ingeniería. Vol. 40, No. 1, diciembre-marzo, 2019

Figura 18. Esquema de la geometría del plato.

Conclusiones

Se realizó la simulación del proceso de absorción de H_2S y CO_2 para el caso de estudio del endulzamiento del gas natural amargo utilizando la herramienta computacional ASPEN PLUS 11.1.

Se utilizó la amina primarias MEA y el balance de materia y energía cerró satisfactoriamente. Se cumplió para la solución acuosa de amina la obtención de un gas dulce con la especificación de $H_2S \le 4$ ppm y de $CO_2 \le 2$ %mol. Se obtuvo un cierre global del proceso de endulzamiento de recuperación del 98 % como gas ácido.

Se encontró una recuperación del 99.99 % de H_2S y del 96 % de CO_2 en la torre de absorción. Mientras que en el regenerador las condiciones de operación deben ser de 1.35 bar y 90 °C en el tope de columna con una obtención en recuperación de CO_2 del 98.29 % y de H_2S de 96.98 %.

Se obtuvo una temperatura en el rehervidor por debajo o igual a 114 ^oC, la cual permite evitar la degradación de la amina y evitar problemas de corrosión.

Al aumentar la concentración de la solución utilizada para endulzar el gas natural afecta al flujo de amina gastado ya que este disminuye, pero no afecta el calor de absorción de los gases ácidos en el sistema.

El análisis paramétrico permite identificar las variables que pueden ser manipuladas para conseguir un funcionamiento cuasi óptimo del proceso de endulzamiento con aminas. Para este caso se obtuvo el flujo mínimo de la solución acuosa de amina para las diferentes concentraciones estudiadas.

Se obtuvo la relación mol de gas ácido/mol de amina en el fondo de la columna de absorción dentro de los valores sugeridos por la literatura.

Se obtuvo una satisfactoria hidráulica de la columna, una geometría propuesta de plato que género una caída de presión por plato de 0.007 bar y una caída de presión total de la columna de 0.2 bar.

Referencias

ASPEN PLUS manual, 2002, Physical Property Model. Arnold, K, Stewart M, 1989, Surface Production Operations. Volume 2: Design of Gas-Handling Systems and Facilities. Gulf Publising Company Editions. Houston, Texas, E.U, pp 141-180.

DuPart MS, Bacon TR, Edwards DJ, 1963, Understanding Corrosion in Alkanolamine Gas Treating Plants, Part 1. Hydrocarbon Processing (April), pp.80.

Kent RL, Eisenberg B, 1976, Better data for amine treating, Hydrocarbon Processing(February), pp. 87-90.

Kohl AL, Riesenfeld FC, 1985, Gas Purification, Four Edition. Gulf Publising Company Editions, Houston, Texas, E.U, pp. 29-109.

Martínez Marcías J, 1995, Endulzamiento del gas natural, Ingeniería de gas, principios y aplicaciones, Ingenieros Consultores S.R.L, Maracaibo, Venezuela, pp.1-150.

Rojey A, Jaffret C, Cornot-Gandolphe S, Durand B, Jullians S, Valais M, 1997. Natural Gas: Production processing transport, Technip-paris Editions, France, pp. 45-170.

Serrano RA, Zavala CM, 2004. Operación de una Planta Piloto de Endulzamiento de Gas Natural. Tesis de Licenciatura. Universidad las Américas. Cholula, Puebla, México. Mayo, pp. 10-60.

Tennyson RN, Schaaf RP, 1977, Guidelines Can Help Choose Proper Process for Gas-Treating Plants, Oil & Gas J 75 (2), pp.78.

Treybal RE, 1980, Operaciones con Transferencia de Masa. Ed. Mc.Graw Hill, Europe.pp: 270-300.

Van Winkle M, 1967, Distillation. Ed. Mc.Graw Hill, New York, pp. 585.

Recibido: 13 de enero de 2018

Aceptado: 18 de octubre de 2018

Tixi, Hernan: M.Sc en Ingeniería Química, ULA, Mérida, Venezuela. Prof. Escuela Superior Politécnica Chimborazo. Riobamba-Ecuador.

Barahona, Natalia: M.Sc en Ingeniería Química, ULA, Mérida, Venezuela. Prof. Escuela Superior Politécnica Chimborazo. Riobamba-Ecuador. Correo electrónico: natalia.barahona@espoch.edu.ec

Garmendia, Henry: Ingeniero Químico, ULA, Mérida, Venezuela. Correo electrónico: labpetroleo2018@gmail.com

Ramírez, John: M.Sc en Ingeniería Química, ULA, Mérida, Venezuela. Correo electrónico: rjohn8865@gmail.com