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Abstract

In order to help children with their difficulties in multiplication tables, this paper presents a learning system based on the
Q-learning algorithm, which allows software agents to learn what multiplication tables are difficult for a child. The results
indicate that our learning system is effective to learn the children’s levels of difficulties (low, medium, high, and very high)
in the multiplication tables, when an agent randomly asks all operations of the multiplication tables (64 operations, since 2
until 9). In addition, our learning system allows knowing what multiplication tables have more difficulty with respect to the
others, after asking at least once an operation for each multiplication table.

Keywords: Agent, social robot, Q-learning, reinforcement learning.

Resumen

Para ayudar a los niños con sus dificultades con las tablas de multiplicar, este artículo presenta un sistema de aprendizaje
basado en el algoritmo Q-learning, que permite a los agentes de software aprender qué tablas de multiplicar son difíciles
para un niño. Los resultados indican que nuestro sistema de aprendizaje es eficaz para aprender los niveles de dificultad de
los niños (bajo, medio, alto y muy alto) en las tablas de multiplicar, cuando un agente pregunta aleatoriamente todas las
operaciones de las tablas de multiplicar (64 operaciones, del 2 al 9). Además, nuestro sistema de aprendizaje permite saber
qué tablas de multiplicar presentan mayor dificultad con respecto a las demás, tras preguntar al menos una operación por
cada tabla.

Palabra clave: Agente, robot social, Q-learning, aprendizaje por refuerzo.

1 Introduction

The software agents are being used to help children
in mathematical learning, such as: an agent asks deep
questions on the learning material during a computer
game (Pareto, 2014); an agent guides algebra lessons
with prescriptive instructional guidance and anxiety
treating messages (Kim et al., 2016); children guide to
the agent to play correctly a game (Axelsson et al.,
2013); and an agent integrated into a learning
environment acts as a tutor and motivator
(Mohammadhasani et al., 2018).

Recently, the typical agents used are social robots.
For example, children complete mathematical problems
with robots (Ramachandran et al., 2017); children solve
tests of multiple-choice math questions while robots
give verbal feedback (Brown & Howard, 2014);
children participate in a game-based learning activity to
learn arithmetic with the guidance of robots (Vrochidou
et al., 2018); children practice multiplication with
problems that include whole numbers, while robots
guide the practice (Liles, 2021).

In general, the agents as social robots have been
shown to be effective for increasing cognitive and
affective outcomes of children, achieving outcomes
similar to those of human tutoring on restricted tasks
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(Belpaeme et al., 2018). In addition, the social robots
can provide a personalized learning and social support
(Michaelis & Mutlu, 2019). Therefore, the social robots
are promising to continue helping children.

Particularly, in the context of mathematical
learning, multiplication is a fundamental area in which
many students manifest learning difficulties (Zhang et
al., 2016). According to Zhang et al. (2013), helping
students with mathematics difficulties to develop
sufficient multiplication problem-solving skills, is a
priority for educators and researchers. It means that
helping children with difficulties in multiplication
tables, also known as times tables, is relevant.

According to Park et al. (2019), the current
personalized education technologies are capable of
delivering adaptive interventions that play an important
role in addressing the needs of diverse young learners.
In this context, children’s difficulties in multiplication
tables are different for every child, therefore, social
robots need to learn the particular difficulties in
multiplication tables for every child.

According to Castro-González et al. (2011),
learning is an active area in robotic, and reinforcement
learning is one of the learning methods that has been
most successfully implemented in robots. Among the
different solution methods, Q-learning is performing
extremely well in the field of robotic (Jang et al., 2019).
For example, a robot uses Q-learning to select stories
that are optimized for each child’s linguistic skill
progression (Park et al., 2019). In our case, a Q-
learning based algorithm will allow learning the
particular difficulties in multiplication tables for every
child.

In this paper, we present how a Q-learning based
algorithm can be used for learning the children’s
difficulties in the multiplication tables. The paper is
organized as follows: in section 2, we present the main
concepts related to our proposition; in section 3, we
describe our proposed learning system; in section 4, we
show the experimental tests; and in section 5, we
present the conclusions and future works.

2 Preliminary concepts

Reinforcement learning allows learning what to do
through trial and error interactions with an environment.
The task of reinforcement learning is to use observed
rewards to learn an optimal policy for the environment
(Aguilar, 2014; Russell & Norvig, 2016). The distinction
between problems and solution methods is very important
in reinforcement learning (Sutton & Barto, 2018): the
problems are formalized using ideas from the dynamical
system theory, for example, through the Markov Decision
Processes (MDP); and the solution methods allow solving

such problems.
In general, a learning agent interacts over time with its

environment to achieve a goal, therefore, the learning agent
must be able to perceive the state of its environment; take
actions that affect the state; and receive rewards relating to
the state. In this context, a MDP is composed of states,
actions, transitions between states, and a reward function.
Formally, a MDP is a tuple <S,A,T,R> (Van Otterlo &
Wiering, 2012), in which S is a finite set of states, A is a
finite set of actions, T is a transition function defined as
T:S×A×S→[0,1], and R is a reward function defined as
R:S×A×S→R. According to the problem, a MPD can have
or not the transition function.

There are three types of systems that can be modelled
by a MDP (Van Otterlo & Wiering, 2012): fixed horizon
(tasks in which each episode consists of a fixed number of
steps), indefinite horizon (tasks in which each episode can
have an arbitrary length, but ends), and infinite horizon
(tasks where the system does not end at all). An episode
happens when the agent reaches a goal state and the process
restarts in a new initial state; and a step is related to each
action that the agent must take to reach a goal state. It
means that a MDP can have one or more starting and goal
states.

Given a MDP <S,A,T,R>, a policy is a computable
function that outputs for each state s∈S (except goal states)
an action a∈A (or a∈A(s)). Formally, a deterministic policy
π is a function defined as π:S→A (Van Otterlo & Wiering,
2012). It is also possible to define a stochastic policy as
π:S×A→[0,1], such that for each state s∈S (except goal
states), it holds that π(s,a)≥0 and ∑(a∈A) π(s,a)=1. Then,
solving a given MDP means computing an optimal policy
π∗.

Solution methods for solving a MDP can be divided in
several ways. On one side, there are two categories (Russell
& Norvig, 2016): passive learning, where the agent’s policy
is fixed and the task is to learn the utilities of the states; and
active learning, where the agent must learn the policy. In
other side, there are three fundamental classes of methods
(Sutton & Barto, 2018): dynamic programming, Monte
Carlo methods, and temporal-difference learning. Also, the
algorithms can be divided in two classes (Van Otterlo &
Wiering, 2012): model-based, where a model of the MDP is
known beforehand, and can be used to compute value
functions and policies; and model-free, where the agent
interacts with the environment, generating samples of state
transitions and rewards, in order to estimate state-action
value functions.

Q-learning method belongs to active learning,



Q-learning based algorithm for learning… 345

Revista Ciencia e Ingeniería. Vol. 46, No. 3, agosto-noviembre, 2025

temporal-difference learning, and model-free algorithms.
Jang et al. (2019) covered all variants of Q-learning
algorithms, and they conclude that improved Q-learning
algorithms might perform poorly while solving simple
problems in a simple environment, but they outperform
basic Q-learning algorithms when the problem at hand is
complex and under a sophisticated environment. It means
that a basic Q-learning shows an excellent learning ability
in simple environments. In our case study, we will use a
basic Q-learning because our problem is relatively simple (4
states and 8 actions).

Q-learning uses an off-policy method to separate the
acting policy from the learning policy. The basic idea in Q-
learning is to incrementally estimate Q-values for actions,
based on rewards and the agent’s Q-value function.
Specifically, the agent makes a step in the environment
from state s to s’ using action a, and receives a reward R(s’);
then, the update takes place on the Q-value of action a in the
state s from which this action was executed. According to
Watkins & Dayan (1992), equation for the Q-value is as
follows (see equation 1):

Q(s,a) = (1- α) Q(s,a) + α [R(s’) + maxa’Q(s’,a’)] (1)

Equation 1 uses two hiperparameters: the learning rate
α that determines the update rate, and the discount factor 
that determines the present value of future rewards.
Formally, α ∈ [0, 1] and  ∈[0, 1].

In active learning methods as Q-learning, the principal
issue is the exploration (Russell & Norvig, 2016), because
the agent must interact with the environment to learn by
trial and error a correct policy. However, also the
exploitation is used to get the right action that maximizes
the expected reward on the one step (Sutton & Barto, 2018).
First, the agent has to explore the environment by
performing actions and perceiving their consequences
through rewards, and then it can exploit the knowledge. In
addition, if the environment is not stationary, the agent must
explore to keep its policy up-to-date (Van Otterlo &
Wiering, 2012). This naturally induces an exploration-
exploitation trade-off, which has to be balanced to obtain an
optimal policy.

3 Our learning system

3.1 Problem formulation

Social robots communicate through human-like

interactions and must learn from these interactions. In this
paper, social robots must learn children’s difficulties in
multiplication tables. In general, mathematical difficulties
are determined by a low performance on tests of
mathematics (Zhang et al., 2013). Therefore, social robots
must emulate tests through the interactions. A simple
mathematic test consists in a social robot asking all
multiplication tables to a child. It means that the problem
will be formulated for one child, and social robots must
have one model for every child.

In a mathematic test, a social robot must randomly ask
all operations of the multiplication tables of one digit (from
the multiplication table of 2 to the multiplication table of 9),
and a child must answer it. In the problem formulation as a
MDP, each multiplication table represents an action, and
every answer represents a state. The idea is to reward every
answer, in order to benefit negative answers, because in this
way the policy π of the MDP will return actions
(multiplication tables) with more difficulty to the child.

The states are qualifications related to difficulties:
conscious difficulty (child knows that he doesn't know the
correct answer), unconscious difficulty (child doesn't know
that he doesn't know the correct answer), moderate
difficulty (child knows the correct answer, but he is not
sure), and without difficulty (child knows the correct
answer). The rewards must mostly benefit conscious and
unconscious difficulties; and it must less benefit the
moderate difficulty.

The states can be determined indirectly combining two
dichotomic parameters: speed of answer and validity. The
speed of answer can be slow or fast, and the validity can be
incorrect or correct. Specifically, a conscious difficulty is an
answer slow and incorrect; an unconscious difficulty is an
answer fast and incorrect; a moderate difficulty is an answer
slow and correct; and without difficulty is an answer fast
and correct.

Formally, the problem is formulated as a MDP,
denoted as a tuple <A,S,R>, where A is the set of actions or
multiplication tables {multiplication table of 2,
multiplication table of 3, multiplication table of 4,
multiplication table of 5, multiplication table of 6,
multiplication table of 7, multiplication table of 8,
multiplication table of 9}; S is the set of states or answer’s
qualifications {conscious difficulty, unconscious difficulty,
moderate difficulty, without difficulty}; and R is the reward
function as follows (see equation 2):

(2)

The problem is modelled as an indefinite horizon,
because each episode must end, but episodes can have
arbitrary length. Each episode starts in without difficulty
state (initial state) and the goal is to reach a conscious
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difficulty state or unconscious difficulty state (goal states).
In addition, there is a fixed number of operations (steps) to
end the test. The total operations are 64 (8 operations for
each multiplication table) and the idea is to learn the policy
for the formulated problem taking these operations, such
that a social robot can know the multiplication tables that
are difficult for a child.

3.2 Solution method

The formulated problem in the previous section has not
a transition function because the problem is a model-free.
Also, the problem does not have a policy, which means that
it is an off-policy problem. The solution method used for
this kind of problems is Q-learning, which goal is estimate
Q-values. In our problem, the Q-values will allow knowing
the difficulties in multiplication tables for every child.

Table 1. Learning algorithm

Step Instruction

1. Initialize Q(s,a) = 0

2. s = initial state

3. For each a in O:

3.1. Take action a

3.2. Observe s’, R(s’)

3.3. Update Q(s, a) using equation 1

3.4. s = s’

3.5. If (s == goal state) then s = initial state

In the process of estimation of Q-values, our algorithm
requires only exploration, because it must determine the end
Q-values in the least amount of iterations. According to the
amount of operations required for the test, we use a set of
operations called O, which contains 64 operations (8
operations for each multiplication table). Because our
problem was modelled like an indefinite horizon, we use an
initial state, but several goal states in the algorithm. The
algorithm used is shown in Table 1.

In lines 1 and 2, the algorithm begins with all Q-values
in zero and in a specific initial state (without difficulty).
Then, each action belonging to the set of 64 operations O
(line 3) is performed (line 3.1) and based on child answers
(line 3.2), the Q-value is updated (line 3.3), a transition is
made to a new state (line 3.4), and it is compared in order to
restart the initial state when it reach a goal state (line 3.5).
The 64 operations are randomly taken, and the algorithm
ends when all operations are processed.

In our formulated problem, future rewards are not
important because there is not interdependence among the
states to reach a goal state. Therefore, according to

Vlachogiannis & Hatziargyriou (2004), the value of the
discount factor is set to 0.005. On the other hand, the
selection of the learning rate α for our algorithm will be
fixed with helping of a sensitivity analysis, according to the
best performance to our problem (see section 4). Finally,
when the algorithm ends, the social robot knows the
multiplication tables that are difficult for the child, through
the Q-values, where the greatest values represent the
multiplication tables with the greatest difficulties.

4 Testing

4.1 Experimental protocol

The experimental goal is to verify that our learning
system allows learning children’s difficulties in
multiplication tables. The experiments will be successful
when the Q-values indicate the multiplication tables that are
difficult for the children. The experimental protocol is
divided in four experiments: 1) convergence, in order to
know the convergence Q-values; 2) sensitivity analysis of
the learning rate α, in order to select the best value for our
model; 3) learning fixed profile of two children to know
how the model learns in two instances; and 4) learning of a
variable profile of one child, in order to analyze how the
model can adapt to variable performance of a child.

In each experiment, it is necessary to instance our
model at least one time, and to simulate the children
answers. The children answer is simulated with profiles,
where each profile is related to the child’s knowledge about
each multiplication table. For that, we specified two
attributes: difficulty level (low, medium, high, and very
high) of each multiplication table, and answer’s
probabilities of each difficulty level.

The answer’s probabilities for difficulty levels try to
simulate that in each level of difficulty there is an answer
with higher probability, but it can be another. In Table 2, we
present the probability distribution, where the low difficulty
level means that the child can answer without difficulty
80% of the time, with moderate difficulty 10% of the time;
and the rest is distributed between unconscious difficulty
(5% of the time) and conscious difficulty (5% of the time).
The others levels in Table 2 can be interpreted in the same
way.

Table 2. Answer’s probabilities of each difficulty level

Difficulty P(cd) P(ud) P(md) P(wd)

Low 0.05 0.05 0.1 0.8

Medium 0.05 0.05 0.8 0.1

High 0.1 0.8 0.05 0.05

Very High 0.8 0.1 0.05 0.05
cd = “conscious difficulty” state, ud = “unconscious difficulty” state, md =
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“moderate difficulty” state, and wd = “without difficulty” state.

In order to carry out the experiments, we define three
profiles for the children: bad (it simulates a child with bad
performance in the tests of the multiplication tables),
regular (it simulates a child with medium performance), and
good (it simulates a child with good performance). In Table
3, we present the profiles mapped to each multiplication
table, where bad profile means that high difficulty is
mapped to multiplication tables of 2, 3, 4 and 5; and very
high difficulty level with multiplication tables of 6, 7, 8 and
9. The others profiles in Table 3 can be interpreted in the
same way.

The profiles are used in the four experiments as
follows: in the convergence and the sensitivity analysis of
the learning rate, we use the regular profile because it
allows analysing how our model learns each level of
difficulty; in the learning fixed profile of two children, we
use the bad and good profiles to train one instance of our
model for each child; and in the learning of a variable
profile of one child, we use the bad and good profiles in
only one instance of our model, in order to simulate a child
with an initial bad performance and later it changes to a
good performance.

Table 3. Difficulty level of each multiplication table in the three children
profiles

Multipl.
Table

Profile

Bad Regular God

2 High Low Low

3 High Low Low

4 High Medium Medium

5 High Medium Medium

6 Very High High Low

7 Very High High Low

8 Very High Very High Medium

9 Very High Very High Medium

4.2 Results

4.2.1 Convergence
Q-learning allows convergence in Q-values after

several iterations (Watkins & Dayan, 1992). The goal of
this experiment is to know the Q-values of convergence for
each level of difficulty. For that, the model is instanced
using the regular profile (see Table 3), and according to
Castro-González et al. (2011), the rate learning (α) is set to
0.3. Then, we run our learning algorithm for 256 operations
(32 random operations for each multiplication table, using a
uniform distribution). In the Figure 1, we show the average

Q-values for each step (operation) in 100 runs, and we
appreciate that the four levels of difficulty converge after
the step 100 in Q-values close to: 0.13 for low level of
difficulty; 0.35 for medium level of difficulty; 0.63 for high
level of difficulty; and 0.86 for very high level of difficulty.
These results follow our goal, the Q-values of the states that
represent the greatest difficulty for children are the biggest.

Figure 1. Average Q-values of initial state for a regular profile, using α =
0.3 and 256 steps

In order to get a better idea of the convergence of Q-
values, in Figure 2 we show the standard deviations of the
average Q-values presented on the Figure 1. It allows
checking that the four levels of difficulty converge after the
step 100, being the standard deviations between 0.06 and
0.13. These results are the references to use our learning
system, however, we need to work with a smaller number of
steps (ideally 64 steps because this cover the multiplication
test).

Figure 2. Standard deviations of average Q-values of initial state for a
regular profile, using α = 0.3 and 256 steps

4.2.2 Sensitivity analysis
The goal of this experiment is to understand the

relationships between an input and the outputs of our model,
in order to select the appropriate value of the input,
according to the expected behavior of our model. The input
of interest is the learning rate (α), the outputs of interest are
the end Q-values, and the expected behavior is that end Q-
values of the initial state (without difficulty) in the last
operation (operation 64) indicates the multiplication tables
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that are difficult for a child (specified in a profile).
For that, our model is instanced using the regular

profile, we test our learning algorithm on 100 runs for
different values of α, and the results are shown in the Table
4. The end Q-values shown are average of 100 runs with its
standard deviations. Because the regular profile has
associated all levels of difficulty (low, medium, high, and
very high), in Table 4 we show the results of only one
multiplication table (which is representative) for each
difficulty level (for example, multiplication table of 3 for
low difficulty).

In Table 4, we appreciate that the learning rate (α) has
an incidence in the end Q-values. In general, α represents
how much the Q-values are updated; it means that higher
values of α allow faster convergence of the Q-values. That
behavior can be appreciated in our results. For example, the
results for the smallest α tested (0.1) have the smallest
standard deviations (between 0.05 and 0.08), but they have
far Q-values with respect to the convergence values; and the
results for the highest α tested (1) are close Q-values with
respect to the convergence values, but they have high
standard deviations (between 0.13 and 0.29).

Since the learning rate 0.4 allows getting Q-values
close to the convergence values with standard deviation
between 0.10 and 0.14, we will select this learning rate for
our algorithm. In order to understand better the behavior of
our model while is running our algorithm, we show in the
Figure 3 the average Q-values for each step (operation) of
the multiplication test (64 operations). In Fig 3, we
appreciate that multiplication tables with low level of
difficulty have end Q-values close to 0.11 (multiplication
tables off 2 and 3, see Table 3); multiplication tables with
medium level of difficulty have end Q-values close to 0.32;
multiplication tables with high level of difficulty have end
Q-values close to 0.60; and multiplication tables with very
high level have end Q-values close to 0.82.

Table 4. Sensitivity analysis of learning rate

α
Low (T3) Medium (T5) High (T7) Very High

(T9)

σ σ σ σ

0.1 0.06 0.05 0.17 0.05 0.31 0.05 0.42 0.08

0.2 0.09 0.09 0.25 0.06 0.48 0.07 0.63 0.11

0.3 0.11 0.11 0.30 0.07 0.57 0.09 0.75 0.13

0.4 0.11 0.12 0.32 0.10 0.60 0.10 0.82 0.14

0.5 0.12 0.16 0.33 0.11 0.64 0.11 0.83 0.16

0.6 0.13 0.18 0.34 0.12 0.64 0.14 0.88 0.16

0.7 0.13 0.22 0.36 0.13 0.62 0.17 0.87 0.18

0.8 0.11 0.18 0.35 0.14 0.66 0.17 0.89 0.21

0.9 0.15 0.27 0.34 0.16 0.63 0.16 0.85 0.23

1 0.14 0.29 0.31 0.13 0.65 0.19 0.88 0.26

Figure 3. Average Q-values of initial state for a regular profile, using α =
0.4 and 64 steps

4.2.3 Learning fixed profile of two children

The goal of this experiment is to analysis the behavior
of our learning system with the basic test of multiplication
tables. For that, we create two instances of our model in
order to test with two profiles (each profile simulates one
child). The first profile is bad, and the second one is good
(see Table 3). In Figure 4, we show the results of the bad
profile, where can be appreciated that the end Q-values
(step 64) are close to the convergence Q-values of our
model: the multiplication tables of 2, 3, 4 and 5 have end Q-
values close to 0.60; and the multiplication tables of 6, 7, 8
and 9 have end Q-values close to 0.82. It means that a social
robot could know the specific multiplication tables that are
difficult for a child of bad performance, and in addition, it
could know the levels of difficulty of each one, making
comparisons with the convergence Q-values.

Figure 4. Average Q-values of initial state for a bad profile, using α = 0.4
and 64 steps

In Figure 5, we show the results of the good profile,
where can be appreciated that the end Q-values are close to
the convergence Q-values of our model: the multiplication
tables of 2, 3, 6 and 7 have end Q-values close to 0.11; and
the multiplication tables of 4, 5, 8 and 9 have end Q-values
close to 0.32. In this case, the end Q-values are close to the
convergence Q-values. In this way, a social robot could
know the specific multiplication tables that are not difficult
for a child with good performance, and knows the levels of
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difficulty of each one, making comparisons with the
convergence Q-values.

Figure 5. Average Q-values of initial state for a good profile, using α = 0.4
and 64 steps

4.2.4 Learning of a variable profile of one child

The goal of this experiment is to analysis the behavior
of our learning system when the basic test of multiplication
tables is applied to a child who has changed his profile. For
that, we use the bad and good profiles in the same instance
of our model. When we run our learning system with the
bad profile, we get the results as is shown in Figure 4, and
later, when we run it with the good profile, we get the
results that are shown in Figure 6, where can be appreciated
that the initial Q-values are the same end Q-values of the
Fig 4. These Q-values are modified until the last step to get
the end Q-values, which are close to 0.4 for multiplication
tables with medium level of difficulty and are close to 0.2
for multiplication tables with low level of difficulty. It
means that the Q-values in this case are far to the
convergence Q-values, in comparison with the other cases,
however, a social robot could know which multiplication
tables are more difficult for a child in comparison with the
other multiplication tables, through the Q-values. In general,
our learning system follows the change of profile of the
child.

Figure 6. Average Q-values of initial state from bad to good profile, using
α = 0.4 and 64 steps

5 Conclusions

In our learning system, the Q-values converge after of
the step 100 as follows (see Figure 1): 0.13 for
multiplication tables with low level of difficulty; 0.35 for
multiplication tables with medium level of difficulty; 0.63
for multiplication tables with high level of difficulty; and
0.86 for multiplication tables with very high level of
difficulty. These Q-values have a standard deviation
between 0.06 and 0.13, and can be used to get the level of
difficulty of each multiplication table in a given context.
However, in our case of study, 100 steps (it means that
social robot asks 100 operations to the child) is so much.
One option is to use the Q-values before the step 100, but
implies a higher standard deviation (see Figure 2). Because
a basic multiplication test consists in asks one time all
operations of the multiplication tables, 64 operations are
acceptable for our case study.

The sensitivity analysis for different values of the
learning rate, allows appreciating that for the highest values
of the learning rate, the Q-values are close faster to
convergence Q-values, but the standard deviation is higher:
a learning rate of 0.1 has a standard deviation between 0.05
and 0.08, and a learning rate of 1 has a standard deviation
between 0.13 and 0.29. A learning rate of 0.4 is an
equilibrium between the fast convergence and the standard
deviation values, and allows getting Q-values close to the
convergence Q-values in the step 64, which is acceptable
for our case study.

Our learning system allows knowing the multiplication
tables that are difficult or not for children with several
profiles: regular (see Figure 3), bad (see Figure 4) and good
(see Figure 5). This is possible comparing the end Q-values
with the convergence Q-values as follows: the end Q-value
of a child has the same level of difficulty in that
multiplication table as the nearest convergence Q-value. In
this sense, an end Q-value nearest to 0.13 means a low level
of difficulty; nearest to 0.35 means a medium level of
difficulty; nearest to 0.63 means a high level of difficulty;
and nearest to 0.86 means a high level of difficulty.

Our learning system allows knowing the multiplication
tables that are difficult for a child that change his profile. In
general, our learning system is able to know which
multiplication tables are more difficult for a child after asks
him at least one operation for each multiplication table in all
the case studies.

There are several future works. A first future work
must extend this study with information of the context, like
more actions guided by the educational paradigms and
based on the learning profiles of the children. Also, another
future work must analyze the sorting of the Q-values to get
the order of difficulty, which can be useful for a social robot
in order to help children through specific learning strategies
adequate to them. For example, once the system knows
which multiplication tables are more difficult for the child,
which policy of actions to follow in order to reduce that
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difficulty. Some of the possible results would be practice
sessions of all the multiplication tables, making emphasis
on the ones that the child has more difficulty without
knowing, or fun strategies to reduce the difficulty without
asking the multiplication tables.

Also, in the field of social robotics, it will be necessary
to include other actions linked to the body of the robot, such
as its mobility and expressions (non-verbal language like
emotional expressions through the face (Pérez et al., 2020)),
to make the learning process more harmonious. Finally, the
article has used two parameters to determine the status
(response time of the child, and validity of the response). A
future work should interpret human characteristics (for
example, affective states (Pérez et al., 2024)) when asked,
to enrich the model because it gives evidence of knowledge.
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