Biomateriales a base de quitosano para hidrogeles de regeneración del tejido óseo

Jairo Rondón, Kimberly Ramirez-Vargas, Juan Pablo Saucedo-Vazquez, Edward E. Ávila

Resumen


La regeneración ósea sigue siendo un gran desafío en la ingeniería biomédica, debido principalmente a las limitacionesclínicas de los injertos autólogos y alogénicos. En este contexto, los hidrogeles basados en quitosano (CHs) hansurgidocomo plataformas prometedoras gracias a su biocompatibilidad, capacidad de gelación, porosidad estructural yfacilidadde funcionalización. Esta revisión ofrece un análisis exhaustivo de los fundamentos biológicos de la regeneraciónósea, laspropiedades fisicoquímicas del quitosano y las técnicas de fabricación de hidrogeles empleadas para emular lamatrizextracelular ósea. Se examinan fuentes alternativas de quitina (crustáceos, insectos y hongos), junto con los métodosdedesacetilación (químicos, enzimáticos, asistidos por microondas y con disolventes eutécticos profundos) y su impactoenelgrado de desacetilación (DD), el peso molecular y el comportamiento mecánico del material. Se describenenfoquesavanzados como el electrohilado, la liofilización y la bioimpresión 3D, destacando su influencia en la arquitecturaporosa,la liberación controlada de factores osteoinductivos y la viabilidad celular. También se identifican los retos actualescomola solubilidad limitada, la falta de estandarización de parámetros estructurales y la escalabilidad clínica de los CHs)yseproponen líneas de investigación orientadas hacia terapias personalizadas y plataformas bioactivas multifuncionales.Además, se discuten las perspectivas de aplicación en regeneración osteocondral, liberación dirigida de fármacoseimpresión de tejidos, reforzando el potencial del quitosano como biopolímero estratégico en la medicina regenerativa.


Palabras clave


Hidrogeles; quitosano; propiedades químicas; propiedades mecánicas; ingeniería de tejidos

Texto completo:

PDF

Referencias


Aguilar, A., Zein, N., Harmouch, E., Hafdi, B., Bornert, F., Offner, D., ... & Hua, G. (2019). Application of chitosan in bone and dental engineering. Molecules, 24(16), 3009. https://doi.org/10.3390/molecules24163009

Ansari, M. (2019). Bone tissue regeneration: biology, strategies and interface studies. Progress in Biomaterials, 8 (4), pp. 223-237. https://doi.org/10.1007/s40204-019-00125-z

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256

Azad, A. K., Sermsintham, N., Chandrkrachang, S., & Stevens, W. F. (2004). Chitosan membrane as a wound-healing dressing: characterization and clinical application. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Of icial Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 69(2), 216-222. https://doi.org/10.1002/jbm.b.30069

Chandra, D. K., Kumar, A., & Mahapatra, C. (2024). Fabricating chitosan reinforced biodegradable bioplastics from plant extract with nature inspired topology. Waste and Biomass Valorization, 15(4), 2499-2512. https://doi.org/10.1007/s12649-023- 02293-3

De Alvarenga, E. S. (2011). Characterization and properties of chitosan. Biotechnology of biopolymers, 91, 48-53. https://doi.org/10.5772/17058

De Leon-Oliva, D., Boaru, D. L., Perez-Exposito, R. E., Fraile-Martinez, O., García-Montero, C., Diaz, R., ... & Ortega, M. A. (2023). Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels, 9(11), 885. https://doi.org/10.3390/gels9110885

Fathy, I. A., Ali, D. M., Elmansy, Y., Abd El-Sattar, N. E., & Elsayed, S. (2025). Bone-Regenerating Capacity of Chitosan Membrane and Chitosan Foam Scaffolds in Critical Size Defects: In Vitro and In Vivo Study. Dentistry Journal, 13(4), 153. https://doi.org/10.3390/dj13040153

Freier, T., Koh, H. S., Kazazian, K., & Shoichet, M. S. (2005). Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 26(29), 5872-5878. https://doi.org/10.1016/j.biomaterials.2005.02.033

Hahn, T., Tafi, E., Paul, A., Salvia, R., Falabella, P., & Zibek, S. (2020). Current state of chitin purification and chitosan production from insects. Journal of Chemical Technology & Biotechnology, 95(11), 2775- 2795. https://doi.org/10.1002/jctb.6533

Harmsen, R. A., Tuveng, T. R., Antonsen, S. G., Eijsink, V. G., & Sørlie, M. (2019). Can we make chitosan by enzymatic deacetylation of chitin?. Molecules, 24(21), 3862. https://doi.org/10.3390/molecules24213862

Henry, J. P. & Bordoni, B. (2023). Histology, osteoblasts.En: StatPearls [Internet]. Treasure Island(FL):StatPearls Publishing. Disponibleen:https://www.ncbi.nlm.nih.gov/books/NBK532912

Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z., &Ni,Y. (2022). Sources, production and commercialapplications of fungal chitosan: Areview. Journal ofBioresources and Bioproducts, 7(2), 85-98.https://doi.org/10.1016/j.jobab.2022.01.002Ioelovich, M. (2014). Crystallinity and hydrophilityofchitin and chitosan. Journal of Chemistry, 3(3), pp. 7-14. https://www.rroij.com/open-access/crystallinity-and-hydrophility-of-chitin-and-chitosan-.php?aid=33938

Khan, A. R., Grewal, N. S., Jun, Z. y otros (2024). Raisingthe bar: progress in 3D-printed hybrid bonescaffoldsfor clinical applications: a review. CellTransplantation, 33, pp. 09636897241273562. https://doi.org/10.1177/09636897241273562

Kim, Y., Zharkinbekov, Z., Raziyeva, K., Tabyldiyeva, L.,Berikova, K., Zhumagul, D., ... &Saparov, A. (2023).Chitosan-based biomaterials for tissueregeneration. Pharmaceutics, 15(3), 807. https://doi.org/10.3390/pharmaceutics15030807

Kumar, B. S., Isloor, A. M., Kumar, G. M., Inamuddin, &Asiri, A. M. (2019). Nanohydroxyapatite reinforcedchitosan composite hydrogel with tunable mechanicaland biological properties for cartilageregeneration. Scientific reports, 9(1), 15957. https://doi.org/10.1038/s41598-019-52042-7

Lazaridou, M., Bikiaris, D. N., &Lamprou, D. A. (2022).3D bioprinted chitosan-based hydrogel scaffoldsintissue engineering and localiseddrugdelivery. Pharmaceutics, 14(9), 1978. https://doi.org/10.3390/pharmaceutics14091978

Li, W., Wu, Y., Zhang, X., Wu, T., Huang, K., Wang, B., &Liao, J. (2023). Self-healing hydrogels for bonedefectrepair. RSC advances, 13(25), 16773-16788. https://doi.org/10.1039/d3ra01700a

Li, X., Xing, R., Xu, C., Liu, S., Qin, Y., Li, K., ... &Li, P.(2021). Immunostimulatory effect of chitosanandquaternary chitosan: A reviewof potential vaccineadjuvants. Carbohydrate polymers, 264, 118050. https://doi.org/10.1016/j.carbpol.2021.118050

Lourenço, L. R., Borges, R., Carastan, D., Mathor, M. B., &Marchi, J. (2024). Precision 3Dprinting of chitosan-bioactive glass inks: Rheological optimizationforenhanced shape fidelity in tissue engineeringscaffolds. Bioprinting, 43, e00359. https://doi.org/10.1016/j.bprint.2024.e00359

Ma, Y., Zhou, R., Yang, M. y otros (2025).Electrospinning-based bone-tissue scaffoldconstruction: progress and trends. Materials &Design,pp. 113792. https://doi.org/10.1016/j.matdes.2025.113792

Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. https://doi.org/10.1016/S0142-9612(99)00011-3

Mazoochi, T., & Jabbari, V. (2011). Chitosan nanofibrous scaffold fabricated via electrospinning: The effect of processing parameters on the nanofiber morphology. International Journal of Polymer Analysis and Characterization, 16(5), 277-289. https://doi.org/10.1080/1023666X.2010.550229

Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., ... & Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in food science & technology, 105, 17-42. https://doi.org/10.1016/j.tifs.2020.08.016

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Bmj, 339. https://doi.org/10.1371/journal.pmed.1000097

Nallusamy, J., & Das, R. K. (2021). Hydrogels and their role in bone tissue engineering: An overview. Journal of Pharmacy and BioAllied Sciences, 13(Suppl 2), S908-S912. https://doi.org/10.4103/jpbs.jpbs_237_21

Nahian, A., & AlEssa, A. M. (2023). Histology, Osteocytes. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK558990/

Nguyen, H. T., Do, N. H., Lac, H. D., Nguyen, P. L., & Le, P. K. (2023). Synthesis, properties, and applications of chitosan hydrogels as anti-inflammatory drug delivery system. Journal of Porous Materials, 30(2), 655-670. https://doi.org/10.1007/s10934-022-01371-6

Novikov, V. Y., Derkach, S. R., Konovalova, I. N., Dolgopyatova, N. V., & Kuchina, Y. A. (2023). Mechanism of heterogeneous alkaline deacetylation of chitin: A review. Polymers, 15(7), 1729. https://doi.org/10.3390/polym15071729

Oliveira, É. R., Nie, L., Podstawczyk, D., Allahbakhsh, A., Ratnayake, J., Brasil, D. L., & Shavandi, A. (2021). Advances in growth factor delivery for bone tissue engineering. International journal of molecular sciences, 22(2), 903. https://doi.org/10.3390/ijms22020903

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P. & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, pp. n71. https://doi.org/10.1136/bmj.n71

Patois, E., Cruz, S. O. D., Tille, J. C., Walpoth, B., Gurny, R., & Jordan, O. (2009). Novel thermosensitivechitosan hydrogels: In vivo evaluation. Journal of Biomedical Materials Research Part A: An Of icial Journal of The Society for Biomaterials, The JapaneseSociety for Biomaterials, and The Australian Societyfor Biomaterials and the Korean Society forBiomaterials, 91(2), 324-330. https://doi.org/10.1002/jbm.a.32211

Pellis, A., Guebitz, G. M., & Nyanhongo, G. S. (2022). Chitosan: sources, processing and modificationtechniques. Gels, 8(7), 393. https://doi.org/10.3390/gels8070393

Purohit, S. D., Bhaskar, R., Singh, H., Priyadarshi, R., Kim, H., Son, Y., ... & Han, S. S. (2024). Chitosan-basedelectrospun fibers for bone-tissue engineering: Recent research advancements. International Journal of Biological Macromolecules, 136530. https://doi.org/10.1016/j.ijbiomac.2024.136530

Putri, T. S., & Elsheikh, M. (2022). Flexural StrengthEvaluation of Chitosan-Gelatin-?-TricalciumPhosphate-Based Composite Scaffold. Journal of International Dental and Medical Research, 15(1), 31- 34. https://www.jidmr.com/journal/wp-content/uploads/2022/03/6-D21_1649_Tansza_Setiana_Putri_Indonesia.pdf

Rondón, J., Sánchez-Martínez, V., Lugo, C., &Gonzalez- Lizardo, A. (2025). Tissue engineering: Advancements, challenges and future perspectives. Revista CienciaeIngeniería. Vol, 46(1). http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/20607/21921932297

Rondón, J., Vázquez, J. y Lugo, C. (2023). Biomaterialsused in tissue engineering for the manufacture of scaffolds. Ciencia e Ingeniería, 44 (3). http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/19221

Saber, M., Shaabani, A., Sedghi, R., Motasadizadeh, H., Salimiyan, N., Gholami, M., ... & Haramshahi, S. M. A. (2025). Biguanidylated chitosan nanofiber scaffold: A green approach to promote osteogenesis in calvarial bone regeneration. Carbohydrate Polymers, 123736. https://doi.org/10.1016/j.carbpol.2025.123736

Sangnim, T., Dheer, D., Jangra, N., Huanbutta, K., Puri, V., & Sharma, A. (2023). Chitosan in oral drug deliveryformulations: A review. Pharmaceutics, 15(9), 2361. https://doi.org/10.3390/pharmaceutics15092361

Sawaguchi, A., Ono, S., Oomura, M., Inami, K., Kumeta, Y., Honda, K., ... & Saito, A. (2015). Chitosandegradation and associated changes in bacterial community structures in two contrasting soils. Soil Science and Plant Nutrition, 61(3), 471-480. https://doi.org/10.1080/00380768.2014.1003965

Subbiah, T., Bhat, G. S., Tock, R. W. y Parameswaran, S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96 (2), pp. 557-569. https://doi.org/10.1002/app.21549

Sugiyanti, D., Anggrahini, S., Pranoto, Y., Anwar, C., & Santoso, U. (2019). Low Molecular Weight Chitosan from Shrimp Shell Waste using Steam-Explosion Process Under Catalyst of Phosphotungstic Acid. Oriental Journal of Chemistry, 35(1). https://doi.org/10.13005/ojc/350122

Szymanska, E., & Winnicka, K. (2015). Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Marine drugs, 13(4), 1819- 1846. https://doi.org/10.3390/md13041819

Tahir, I., Wijaya, K., Krismayanti, D., Saviola, A. J., Wahab, R. A., Amin, A. K., ... & Pratika, R. A. (2024). Microwave radiation-assisted chitin deacetylation: Optimization by response surface methodology (RSM). Korean Journal of Materials Research, 34(2), 85-94. https://doi.org/10.3740/mrsk.2024.34.2.85

Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., ... & Falabella, P. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific reports, 12(1), 6613. https://doi.org/10.1038/s41598- 022-10423-5

Wang, J., Xiong, J., Li, G., Zhou, Z., Yang, Y., & He, L. (2025a). Electrospinning of hydroxypropyl chitosan nanofibers for bone regeneration application. bioRxiv, 2025-01. https://doi.org/10.1101/2025.01.05.631378

Wang, C., Wang, B., Ji, X., Tang, X., Li, Y., Huang, Y., & Ma, X. (2025b). Plant xylem-inspired chitosan-gelatin scaffolds reinforced with graphene oxide with a superior mechanical strength and hydrophilicity for bone tissue engineering. International Journal of Biological Macromolecules, 145488 https://doi.org/10.1016/j.ijbiomac.2025.145488

Yanat, M., & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161, 104849. https://doi.org/10.1016/j.reactfunctpolym.2021.104849

Yue, S., He, H., Li, B., & Hou, T. (2020). Hydrogel as a biomaterial for bone tissue engineering: A review. Nanomaterials, 10(8), 1511. https://doi.org/10.3390/nano10081511

Zhang, Q., Chen, Y., Wei, P., Zhong, Y., Chen, C., & Cai, J. (2021). Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Materials Today, 51, 27-38. https://doi.org/10.1016/j.mattod.2021.10.030




Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.