Hígado artificial: Perspectiva de ingenieríabiomédica

Jairo Rondón, Andrea García, Claudio Lugo, Angel Gonzalez-Lizardo

Resumen


La insuficiencia hepática continúa siendo una condición crítica con opciones terapéuticas limitadas más allá del trasplante.La creciente demanda de alternativas ha impulsado el desarrollo de sistemas artificiales de soporte hepático(SAHE),orientados a emular funciones esenciales del hígado. Esta revisión aborda los principales enfoques tecnológicos:dispositivos artificiales, bioartificiales e híbridos, destacando sus mecanismos de desintoxicación y soporte metabólico. Seanalizan aspectos clave del diseño ingenieril, como la arquitectura del biorreactor, la selección de biomaterialesbiocompatibles, la dinámica microfluídica y la bioimpresión 3D. Además, se examina la integración de inteligenciaartificial para el monitoreo en tiempo real, modelado anatómico y control predictivo. Los organoides hepáticos derivadosde células madre se presentan como plataformas emergentes para aplicaciones regenerativas. Desde unaperspectivacrítica, se evalúa el papel clínico de los SAHE en insuficiencia hepática aguda y crónica, así como su uso comopuentealtrasplante. Finalmente, se identifican desafíos pendientes en inmunocompatibilidad, vascularización y escalabilidad. Elfuturo del soporte hepático apunta hacia una convergencia entre ingeniería, biología regenerativa e inteligenciaartificial,con potencial para transformar la medicina hepática personalizada.


Palabras clave


Hígado artificial; hígado bioartificial; organoides hepáticos; bioimpresión 3D; ingeniería de tejidos

Texto completo:

PDF

Referencias


Akhtar, Z. B. (2024). Exploring biomedical engineering(BME): Advances within accelerated computingand regenerative medicine for a computational andmedical science perspective exploration analysis.

J. Emerg. Med. OA, 2, 1–23. Arroyo, V., Moreau, R., & Jalan, R. (2020). Acute-on- chronic liver failure. New England Journal of Medicine, 382(22), 2137–2145. https://doi.org/10.1056/nejmra1914900

Baddal, B., & Mammadov, E. (2024). Design, manufacture, and characterization of a liver-chipmodel: A platform for disease modeling andtoxicity screening. https://doi.org/10.4274/cjms.2023.2023-94

Ballester, M. P., Elshabrawi, A., & Jalan, R. (2025). Extracorporeal liver support and livertransplantation for acute-on-chronic liver failure. Liver International, 45(3), e15647. https://doi.org/10.1111/liv.15647

Barbosa, F., Coutinho, P., Ribeiro, M. P., Moreira, A. F., Lourenço, L. M., & Miguel, S. P. (2025). Advancements and challenges in SLA-basedmicrofluidic devices for organ-on-chipapplications. Materials & Design, 114254. https://doi.org/10.1016/j.matdes.2025.114254

Bañares, R., Nevens, F., Larsen, F. S., Jalan, R., Albillos, A., Dollinger, M., ... &RELIEFStudyGroup. (2013). Extracorporeal albumin dialysiswith the molecular adsorbent recirculating systemin acute-on-chronic liver failure: The RELIEFtrial. Hepatology, 57(3), 1153–1162. https://doi.org/10.1002/hep.26185

Bhardwaj, N., Sood, M., & Gill, S. S. (2024). 3D- bioprinting and AI-empowered anatomical structure designing: A review. Current Medical Imaging, 20, 1–15. https://doi.org/10.2174/0115734056259274231019061329

Bhatt, S. S., Krishna Kumar, J., Laya, S., Thakur, G., &Nune, M. (2024). Scaf old-mediated liverregeneration: A comprehensive explorationof current advances. Journal of Tissue Engineering, 15, 20417314241286092. https://doi.org/10.1177/20417314241286092

Brown Jr, R. S., Fisher, R. A., Subramanian, R. M., Griesemer, A., Fernandes, M., Thatcher, W. H., ... & Curtis, M. (2025). Artificial liver support systems in acute liver failure and acute-on-chronicliver failure: Systematic review and meta-analysis. Critical Care Explorations, 7(1), e1199. https://doi.org/10.1097/cce.0000000000001199

Cabral-Pacheco, G. A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J. M., Perez-Romero, B. A., Guerrero-Rodriguez, J. F., ... & Martinez- Fierro, M. L. (2020). The roles of matrix metalloproteinases and their inhibitors in human diseases. International journal of molecular sciences, 21(24), 9739. https://doi.org/10.3390/ijms21249739

Cerneckis, J., Cai, H., & Shi, Y. (2024). Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduction and Targeted Therapy, 9(1), 112. https://doi.org/10.1038/s41392-024-01809-0

Chehelgerdi, M., Behdarvand Dehkordi, F., Chehelgerdi, M., Kabiri, H., Salehian-Dehkordi, H., Abdolvand, M., ... & Ranjbarnejad, T. (2023). Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Molecular Cancer, 22(1), 189. https://doi.org/10.1186/s12943-023-01873-0

Du, X., Cai, L., Xie, J., & Zhou, X. (2023). The role of TGF-beta3 in cartilage development and osteoarthritis. Bone research, 11(1), 2. https://doi.org/10.1038/s41413-022-00239-4

Ellis, A. J., Hughes, R. D., Wendon, J. A., Dunne, J., Langley, P. G., Kelly, J. H., ... & Williams, R. (1996). A pilot-controlled trial of the extracorporeal liver assist device was conducted in acute liver failure. Hepatology, 24(6), 1443–1448. https://doi.org/10.1002/hep.510240621

Feng, S., Roll, G. R., Rouhani, F. J., & Fueyo, A. S. (2024). The future of liver transplantation. Hepatology, 80(3), 674–697. https://doi.org/10.1097/HEP.0000000000000873

Gadour, E. (2025). Lesson learnt from 60 years of liver transplantation: Advancements, challenges, and future directions. World Journal of Transplantation, 15(1), 93253. https://doi.org/10.5500/wjt.v15.i1.93253

Gao, X., Li, R., Cahan, P., Zhao, Y., Yourick, J. J., & Sprando, R. L. (2020). Hepatocyte-like cells derived from human induced pluripotent stem cells using small molecules: Implications of a transcriptomic study. Stem Cell Research & Therapy, 11, 1–21. https://doi.org/10.1186/s13287- 020-01914-1

García Martínez, J. J., & Bendjelid, K. (2018). Artificial liver support systems: What is new over the last decade? Annals of Intensive Care, 8, 1–14. https://doi.org/10.1186/s13613-018-0453-z

Gerth, H. U., Pohlen, M., Thölking, G., Pavenstädt, H., Brand, M., Hüsing-Kabar, A., ... & Schmidt, H. H. (2017). Molecular adsorbent recirculating system can reduce short-term mortality among patients with acute-on-chronic liver failure—a retrospective analysis. Critical caremedicine, 45(10), 1616-1624.DOI: 10.1097/CCM.0000000000002562

Gimondi, S., Ferreira, H., Reis, R. L., &Neves, N. M.(2023). Microfluidic devices: Atool fornanoparticle synthesis and performance evaluation.ACS Nano, 17(15), 14205–14228.https://doi.org/10.1021/acsnano.3c01117

Girish, V., Mousa, O. Y., Syed, K., &StatPearlscontributors. (2025). Acute on chronic liver failure.In StatPearls. StatPearls Publishing.https://www.ncbi.nlm.nih.gov/books/NBK499902/Gong, D., Song, J., & Zhang, Y. (2025). Advances,challenges, and future applications of liverorganoids in experimental regenerative medicine.Frontiers in Medicine, 11, 1521851.https://doi.org/10.3389/fmed.2024.1521851

Gonzalez-Avila, G., Sommer, B., Mendoza-Posada, D.A., Ramos, C., Garcia-Hernandez, A. A., &Falfan-Valencia, R. (2019). Matrix metalloproteinasesparticipation in the metastatic process andtheirdiagnostic and therapeutic applicationsincancer. Critical reviews inoncology/hematology, 137, 57-83.https://doi.org/10.1016/j.critrevonc.2019.02.010

Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang,J., ... & Shi, Y. (2022). The secretionprofileofmesenchymal stem cells and potential applicationsin treating human diseases. Signal transductionand targeted therapy, 7(1), 92.https://doi.org/10.1038/s41392-022-00932-0

Hashemi-Afzal, F., Fallahi, H., Bagheri, F., Collins, M.N., Eslaminejad, M. B., &Seitz, H. (2025).Advancements in hydrogel design for articularcartilage regeneration: Acomprehensivereview. Bioactive Materials, 43, 1-31.https://doi.org/10.1016/j.bioactmat.2024.09.005

Hassanein, T. I., Schade, R. R., &Hepburn, I. S. (2011).Acute-on-chronic liver failure: Extracorporealliver assist devices. Current Opinion inCriticalCare, 17(2), 195–203.https://doi.org/10.1097/mcc.0b013e328344b3aa

He, Y. T., Qi, Y. N., Zhang, B. Q., Li, J. B., &Bao, J.(2019). Bioartificial liver support systemsforacute liver failure: A systematic reviewandmeta-analysis. World Journal of Gastroenterology,25(27), 3634–3648.https://doi.org/10.3748/wjg.v25.i27.3634

Heydari, Z., Najimi, M., Mirzaei, H., Shpichka, A.,Ruoss, M., Farzaneh, Z., ... &Vosough, M. (2020).Tissue engineering in liver regenerative medicine:Insights into novel translational technologies.Cells, 9(2), 304.https://doi.org/10.3390/cells9020304

Hu, Y., Geng, Q., Wang, L., Wang, Y., Huang, C., Fan,Z., & Kong, D. (2024). Research progressand application of liver organoids for disease modeling and regenerative therapy. Journal of Molecular Medicine, 102(7), 859–874. https://doi.org/10.1007/s00109-024-02455-3

Jasirwan, C. O. M., Muradi, A., & Antarianto, R. D. (2023). Bio-artificial liver support system: A prospective future therapy. Livers, 3(1), 65–75. https://doi.org/10.3390/livers3010006

Joo, D. J., Nelson, E., Chen, H., Amiot, B., & Nyberg, S. (2025). Bioartificial liver support for acute liver failure. Annals of Liver Transplantation, 5(1), 31–39. https://doi.org/10.52604/alt.25.0004

Jumaah, M. A., Ali, Y. H., & Rashid, T. A. (2025). Artificial liver classifier: A new alternative to conventional machine learning models. arXiv preprint arXiv:2501.08074. https://doi.org/10.48550/arXiv.2501.08074

Karthik, C., Rajalakshmi, S., Thomas, S., & Thomas, V. (2023). Intelligent polymeric biomaterials surface driven by plasma processing. Current Opinion in Biomedical Engineering, 26, 100440. https://doi.org/10.1016/j.cobme.2022.100440

Kim, Y., Kang, M., Mamo, M. G., Adisasmita, M., Huch, M., & Choi, D. (2024). Liver organoids: Current advances and future applications for hepatology. Clinical and Molecular Hepatology, 31(Suppl), S327. https://doi.org/10.3350/cmh.2024.1040

Lanza, R., Langer, R., Vacanti, J. P., & Atala, A. (Eds.). (2020). Principles of tissue engineering. Academic Press. ISBN: 9780128184226

Li, Y., Chen, H. S., Shaheen, M., Joo, D. J., Amiot, B. P., Rinaldo, P., & Nyberg, S. L. (2019). Cold storage of porcine hepatocyte spheroids for spheroid bioartificial liver. Xenotransplantation, 26(4), e12512. https://doi.org/10.1111/xen.12512

Liu, M., Xiang, Y., Yang, Y., Long, X., Xiao, Z., Nan, Y., ... & Ai, K. (2022). State-of-the-art advancements in liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosensors and Bioelectronics, 218, 114758. https://doi.org/10.1016/j.bios.2022.114758

Liu, S., Cheng, C., Zhu, L., Zhao, T., Wang, Z., Yi, X., ... & Yang, B. (2024). Liver organoids: Updates on generation strategies and biomedical applications. Stem Cell Research & Therapy, 15(1), 244. https://doi.org/10.1186/s13287-024-03865-3

Lu, P., Ruan, D., Huang, M., Tian, M., Zhu, K., Gan, Z., & Xiao, Z. (2024). Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal transduction and targeted therapy, 9(1), 166. https://doi.org/10.1038/s41392-024-01852-x

Luo, Q., Wang, N., Que, H., Mai, E., Hu, Y., Tan, R., ... & Gong, P. (2023). Pluripotent stem cell-derived hepatocyte-like cells: Induction methods and applications. International Journal of Molecular Sciences, 24(14), 11592. https://doi.org/10.3390/ijms241411592

Ma, X., Liu, J., Zhu, W., Tang, M., Lawrence, N., Yu, C., ... & Chen, S. (2018). 3D bioprintingof functional tissue models for personalized drugscreening and in vitro disease modeling. AdvancedDrug Delivery Reviews, 132, 235–251. https://doi.org/10.1016/j.addr.2018.06.011

Mariani, E., Pulsatelli, L., & Facchini, A. (2014). Signaling pathways in cartilagerepair. International journal of molecularsciences, 15(5), 8667-8698. https://doi.org/10.3390/ijms15058667

Mielnicki, W., Dyla, A., & Karczewski, M. (2019). Clinical ef ectiveness of MARS treatment–Multidirectional analysis of positive clinical response to treatment. Clinical and Experimental Hepatology, 5(4), 271–278. https://doi.org/10.5114/ceh.2019.89163

Mogosanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds andburns dressing. International Journal of Pharmaceutics, 463(2), 127–136. https://doi.org/10.1016/j.ijpharm.2013.12.015

Municoy, S., Alvarez Echazu, M. I., Antezana, P. E., Galdopórpora, J. M., Olivetti, C., Mebert, A. M., ... & Desimone, M. F. (2020). Stimuli-responsivematerials for tissue engineering and drugdelivery. International Journal of MolecularSciences, 21(13), 4724. https://doi.org/10.3390/ijms21134724

Nguyen, M., Battistoni, C. M., Babiak, P. M., Liu, J. C., & Panitch, A. (2024). Chondroitinsulfate/hyaluronic acid-blended hydrogels suppresschondrocyte inflammation under pro-inflammatoryconditions. ACS Biomaterials Science &Engineering, 10(5), 3242-3254. https://doi.org/10.1021/acsbiomaterials.4c00200

Nguyen, Q. T., Jacobsen, T. D., & Chahine, N. O. (2017). Effects of inflammation on multiscalebiomechanical properties of cartilaginous cells andtissues. ACS Biomaterials Science &Engineering, 3(11), 2644-2656. https://doi.org/10.1021/acsbiomaterials.6b00671Nuciforo, S., & Heim, M. H. (2021). Organoids tomodel liver disease. JHEP Reports, 3(1), 100198. https://doi.org/10.1016/j.jhepr.2020.100198

Ocskay, K., Kanjo, A., Gede, N., Szakács, Z., Pár, G., Eross, B., ... & Molnár, Z. (2021). Uncertaintyinthe impact of liver support systems in acute-on- chronic liver failure: A systematic reviewandnetwork meta-analysis. Annals of Intensive Care, 11, 1–17. https://doi.org/10.1186/s13613-020- 00795-0

Ouchi, R., & Koike, H. (2023). Modeling human liver organ development and diseases with pluripotent stem cell-derived organoids. Frontiers in Cell and Developmental Biology, 11, 1133534. https://doi.org/10.3389/fcell.2023.1133534

Papamichalis, P., Oikonomou, K. G., Valsamaki, A., Xanthoudaki, M., Katsiafylloudis, P., Papapostolou, E., ... & Papadopoulos, D. (2023). Liver replacement therapy with extracorporeal blood purification techniques: Current knowledge and future directions. World Journal of Clinical Cases, 11(17), 3932. https://doi.org/10.12998/wjcc.v11.i17.3932

Peng, X. B., Zhang, Y., Wang, Y. Q., He, Q., & Yu, Q. (2019). IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 120(4), 5570-5582. https://doi.org/10.1002/jcb.27841

Pless, G. (2007). Artificial and bioartificial liver support. Organogenesis, 3(1), 20-24. https://doi.org/10.4161/org.3.1.3635

Pruinelli, L., Balakrishnan, K., Ma, S., Li, Z., Wall, A., Lai, J. C., ... & Simon, G. (2025). Transforming liver transplant allocation with artificial intelligence and machine learning: A systematic review. BMC Medical Informatics and Decision Making, 25(1), 98. https://doi.org/10.1186/s12911- 025-02890-3

Qin, S., Zhu, J., Zhang, G., Sui, Q., Niu, Y., Ye, W., ... & Liu, H. (2023). Research progress of functional motifs based on growth factors in cartilage tissue engineering: a review. Frontiers in Bioengineering and Biotechnology, 11, 1127949. https://doi.org/10.3389/fbioe.2023.1127949

Ramli, M. N. B., Lim, Y. S., Koe, C. T., Demircioglu, D., Tng, W., Gonzales, K. A. U., ... & Chan, Y. S. (2020). Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology, 159(4), 1471–1486. https://doi.org/10.1053/j.gastro.2020.06.010

Rawashdeh, B. (2024). Artificial intelligence in organ transplantation: Surveying current applications, addressing challenges and exploring frontiers. Artificial Intelligence in Medicine and Surgery: An Exploration of Current Trends, Potential Opportunities, and Evolving Threats – Volume 2, 75. https://doi.org/10.5772/intechopen.114356

Ribeiro, C., Silván, U., & Lanceros-Mendez, S. (Eds.). (2024). Stimuli-Responsive Materials for Tissue

Engineering. John Wiley & Sons. Riva, I., Marino, A., Valetti, T. M., Marchesi, G., & Fabretti, F. (2024). Extracorporeal liver support techniques: A comparison. Journal of Artificial Organs, 27(3), 261–268. https://doi.org/10.1007/s10047-023-01409-9

Rondón, J., Muñiz, C., Lugo, C., Farinas-Coronado, W.,& Gonzalez-Lizardo, A. (2024). Bioethicsinbiomedical engineering. Ciencia e Ingeniería,45(2), 159–168.http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/19768/

Rondón, J., Sánchez-Martínez, V. M., Lugo, C., &Gonzalez-Lizardo, A. (2025). Tissue engineering:Advancements, challenges, and future perspectives.Revista Ciencia e Ingeniería, 46(1), 19–28.http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/20607/21921932297

Rondón, J., Vázquez, J., &Lugo, C. (2023).Biomaterials used in tissue engineeringforthemanufacture of scaf olds. Ciencia e Ingeniería,44(3), 297–308.http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/19221

Sakiyama, R., Blau, B. J., & Miki, T. (2017). Clinicaltranslation of bioartificial liver support systemswith human pluripotent stemcell-derivedhepaticcells. World journal of gastroenterology, 23(11),1974. http://dx.doi.org/10.3748/wjg.v23.i11.1974

Saliba, F., Bañares, R., Larsen, F. S., Wilmer, A., Parés,A., Mitzner, S., ... & Jaber, S. (2022). Artificialliver support in patients with liver failure:Amodified DELPHI consensus of internationalexperts. Intensive Care Medicine, 48(10), 1352–1367. https://doi.org/10.1007/s00134-022-06802-1

Sánchez, C. L., Len, O., Gavalda, J., Bilbao, I., Castells,L., Gelabert, M. A., ... & Pahissa, A. (2014). Liverbiopsy–related infection in liver transplantrecipients: A current matter of concern?LiverTransplantation, 20(5), 552–556.https://doi.org/10.1002/lt.23817

Sen, S., Mookerjee, R. P., Cheshire, L. M., Davies, N.A., Williams, R., & Jalan, R. (2005). Albumindialysis reduces portal pressure acutely inpatientswith severe alcoholic hepatitis. Journal ofHepatology, 43(1), 142–148.https://doi.org/10.1016/j.jhep.2005.01.032

Son, H. H., Phuong, P. C., van Walsum, T., &Ha, L. M.(2020). Liver segmentation on a varietyofcomputed tomography (CT) images basedonconvolutional neural networks combinedwithconnected components. VNUJournal of Science:Computer Science and CommunicationEngineering, 36(1). https://doi.org/10.25073/2588-1086/vnucsce.241

Sommerfeld, O., Neumann, C., Becker, J., vonLoeffelholz, C., Roth, J., Kortgen, A., ... &Sponholz, C. (2023). Extracorporeal albumindialysis in critically ill patients with liver failure:Comparison of four dif erent devices—Aretrospective analysis. The International Journal ofArtificial Organs, 46(8–9), 481–491.

rrentino, G., Rezakhani, S., Yildiz, E., Nuciforo, S., Heim, M. H., Lutolf, M. P., & Schoonjans, K. (2020). Mechano-modulatory synthetic niches for liver organoid derivation. Nature Communications, 11(1), 3416. https://doi.org/10.1038/s41467-020- 17161-0

Stange, T., Mitzner, S., Risler, T., Erley, C., Lauchart, W., Goehl, H., ... & Hopt, U. (1999). Molecular adsorbent recycling system (MARS): Clinical results of a new membrane-based blood purification system for bioartificial liver support. Artificial Organs, 23(4), 319–330. https://doi.org/10.1046/j.1525-1594.1999.06122.x

Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., ... & Taniguchi, H. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499(7459), 481–484. https://doi.org/10.1038/nature12271

Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., ... & Taniguchi, H. (2017). Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Reports, 21(10), 2661–2670. https://doi.org/10.1016/j.celrep.2017.11.005

Thorgersen, E. B., Barratt-Due, A., Haugaa, H., Harboe, M., Pischke, S. E., Nilsson, P. H., & Mollnes, T. E. (2019). The role of complement in liver injury, regeneration, and transplantation. Hepatology, 70(2), 725-736. https://onlinelibrary.wiley.com/doi/pdf/10.1002/hep.30508

Trimukhe, A. M., Pandiyaraj, K. N., Tripathi, A., Melo, J. S., & Deshmukh, R. R. (2017). Plasma surface modification of biomaterials for biomedical applications. In Tripathi, A., & Melo, J. (Eds.), Advances in biomaterials for biomedical applications (Vol. 66). Springer. https://doi.org/10.1007/978-981-10-3328-5_3

Tuerxun, K., He, J., Ibrahim, I., Yusupu, Z., Yasheng, A., Xu, Q., ... & Xu, T. (2022). Bioartificial livers: A review of their design and manufacture. Biofabrication, 14(3), 032003. https://doi.org/10.1088/1758-5090/ac6e86

Wang, J., Ren, H., Liu, Y., Sun, L., Zhang, Z., Zhao, Y., & Shi, X. (2021). Bioinspired artificial liver system with hiPSC-derived hepatocytes for acute liver failure treatment. Advanced Healthcare Materials, 10(23), 2101580. https://doi.org/10.1002/adhm.202101580

Xu, T., Li, L., Liu, Y. C., Cao, W., Chen, J. S., Hu, S., ... & Zhou, H. (2020). CRISPR/Cas9-related technologies in liver diseases: From feasibility to future diversity. International Journal of Biological Sciences,16(13), 2283. https://doi.org/10.7150/ijbs.33481

Yang, Z., Liu, X., Cribbin, E. M., Kim, A. M., Li, J. J., & Yong, K. T. (2022). Liver-on-a-chip: Considerations, advances, and beyond. Biomicrofluidics, 16(6). https://doi.org/10.1063/5.0106855

Yarrarapu, S. N. S., & Sanghavi, D. K. (2025). Molecular absorbent recirculating system. StatPearls Publishing. http://europepmc.org/books/NBK555939

Zhang, Y., Dong, N., Hong, H., Qi, J., Zhang, S., &Wang, J. (2022). Mesenchymal stemcells: therapeutic mechanisms for stroke. International Journal of Molecular Sciences, 23(5), 2550. https://doi.org/10.1016/j.tice.2024.102380

Zhidu, S., Ying, T., Rui, J., & Chao, Z. (2024). Translational potential of mesenchymal stemcellsin regenerative therapies for human diseases: Challenges and opportunities. StemCell Research& Therapy, 15(1), 266. https://doi.org/10.1186/s13287-024-03885-z




Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.