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Abstract

A neural network heuristic for the Graph Bisection Problem is studied numerically on geometrically connected
graphs and its performance is compared with the Kernighan - Lin (KL) and Multilevel (ML) heuristics. For medium-
scale sparse graphs with  = 2000 to  = 12000 nodes it was obtained that the NN heuristic applied to the Graph
Bisection Problem present a greedy behaviour in comparison to other local improvements heuristics: Kernighan-Lin,
Multilevel. The experimental results for large graphs recommend to use  as partitioning heuristic for sparse
geometrically connected graphs.

I. INTRODUCTION

The graph partitioning (GPP) is a well known NP-Complete combinatorial optimization problem, see refs. [4],
[10], that has been applied in different areas of computer science, for example: processes load balancing (see ref.
[6]) and circuit layout.
Let  = () be a finite, undirected and connected graph, where  is the set of vertices and  ⊆  ×  is the
set of edges. The GPP consists then in finding  subsets of vertices 1 2  , the partition of set  , verifying:

[
=1

 = 

X
=1

 =  where  = ||   = | | (1)

and such that the cardinality of the cut set:[
=1
 6=

{( ) ∈  ∈   ∈ ∀  = 1    6= } (2)

is minimal. Several heuristics have been proposed to solve GPP, see for instance refs. [2], [3], [9], [11]. Different
computational studies, see refs. [1], [7], [8], [12], have shown that the best heuristic is Multilevel in terms of the
distance to the optimal solution.
In this work is studied numerically a neural network (NN) heuristic for the Graph Bisection Problem (a special
case of the Graph Partitioning Problem).

II. NEURAL NETWORK HEURISTIC FOR THE GBP

A neural network with parallel dynamics is defined by, see ref. [5]: (a) a connectivity matrix  = ()

  = 1  , where  represents the interaction weight between neurons  ; (b) a threshold vector  = ()

 = 1  , where  is the threshold of neuron ; (c) a local transition function  :

(0) ∈ {0 1} (+ 1) = (1(+ 1)  (+ 1))

(+ 1) = 

Ã
P

=1

()− 

!
 = 1  

(3)



where  is the Heaviside function.
In ref. [5] was proved that if the connectivity matrix is symmetric with non negative diagonal, the parallel dynamics
(3) converges to fixed points or cycles of length 2. Therefore, the parallel dynamics (3) defines an optimization
heuristic.
A combinatorial optimization problem equivalent to the GBP must be obtained in order to solve it with an
optimization heuristic of the kind (3) and defined by a quadratic objective function. First, we have to redefine
the variables:  ∈ {0 1}↔  ∈ {−1 1}   = 2 − 1 Then:  = −1 iff  ∈ 1,  = 1 iff  ∈ 2 In addition:

|{( ) ∈  ∈ 1  ∈ 2}| = −
X

∈1

X
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 (4)
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Hence the following combinatorial optimization problem is equivalent to the GBP:

min
∈{−11}

− 1
2

X
=1

X
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 s.t.
X
=1

 = 0 (5)

If the constraint is penalized:

min
∈{−11}

 () = −12
X
=1

X
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 ()  (6)

where:
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(7)

and  is the penalization parameter. Therefore, a neural network can be associated to the GBP with connectivity
matrix () = ( ())   = 1  , zero threshold vector  = (0)=1, Lyapunov functional  () and parallel
dynamics defined by:

(0) ∈ {−1 1}  (+ 1) = (1(+ 1)  (+ 1))  (+ 1) = 

⎛⎝ X
=1

 () ()

⎞⎠  = 1   (8)

where () is the sign function.
The parallel dynamics (8) converges only to fixed points or cycles of length 2, which also are local minima of .
Hence, it defines a local search optimization heuristic for .

III. PERFORMANCE OF THE NN, KL AND ML HEURISTICS

The numerical results were obtained using medium-scale sparse geometrically connected graphs, which are
useful to measure the performance of heuristics that produce improvements in the solution by local changes. A
geometrically connected graph of size  and connectivity radius  can be constructed by  random points ( )
 = 1   in the unit square  = [0 1] × [0 1]. These points will represent the location of the nodes and it
computes the graph connectivity matrix  = (). The nodes   are connected and then  =  = 1 if and
only if:

( ) =

q
( − )

2 + ( − )
2 ≤  (9)

In figure 1 is shown an example of a geometrically connected graph with  = 4000 and  = 0028



Figure 1. Example of a geometrically connected graph with  = 4000 and  = 0028

The performance of the Neural Network (NN), Kernighan-Lin (KL) and Multilevel (ML) sequential heuristics were
computed using the graphs of table 1 and applying the methodology that follows:

• For each graph of table 1, 50 random initial conditions were generated: 0 ∈ {−1 1}.
• The NN, KL, and ML heuristics were applied starting from each initial condition 0.
• The minimum cut was computed  = min

0

¯̄̄n
( ) ∈ ∞ 6= ∞

o¯̄̄
, where ∞ is the configuration

obtained from 0 applying the dinamic (8).
• For the Multilevel heuristic were chosen a threshold equals to 500 and 1000, the Heavy Edge Matching for

the coarsening phase and the Kernighan-Lin heuristic for the partitioning and uncoarsening with refinement
phases, according to the results of refs. [1], [7].

Name #Nodes () #Edges || Radius  Name #Nodes () #Edges || Radius 
2000 2000 21307 0.06 4000 4000 30144 0.035
2000 2000 57213 0.1 6000 6000 31671 0.024
4000 4000 11997 0.022 8000 8000 39788 0.02
4000 4000 13054 0.023 10000 10000 49817 0.018
4000 4000 19283 0.028 12000 12000 61366 0.0165

Table 1. Geometrically connected graphs used for the numerical study.

The numerical results that were obtained for the NN, KL and ML heuristics are summarized in tables 2 and 3.

Heuristic NN KL ML (500) ML (1000)
Graph   []    []    []    []

2000 4373 101 432 239 411 701 418 697
2000 5936 124 1817 133 1880 894 1841 845
4000 1166 786 548 1301 638 2053 704 1992
4000 2013 788 561 1958 935 5179 954 5101
6000 2353 2856 1151 4473 1083 9741 1124 9702
8000 2970 6328 1730 8785 1601 20844 1587 20093
10000 3589 10036 2391 20989 1969 39449 2314 38389
12000 4453 22776 2790 49255 2852 81860 2788 80803

Table 2. Comparison of the performance of the NN, KL and ML sequential heuristics.



From table 2 it is clear that the solutions computed by NN have the larger distance to the best known solution for
the graphs used. In table 3 are shown the distance of the best solution computed by the NN heuristic and the KL
heuristic with respect to the best solution computed by the other heuristics: ML(500) and ML(1000).

Graph  (500) (1000) (500) (1000)

2000 0.90 0.91 0.90 0.05 0.03
2000 0.69 0.68 0.69 -0.03 -0.01
4000 0.53 0.45 0.40 -0.16 -0.28
4000 0.72 0.54 0.53 -0.67 -0.70
6000 0.51 0.54 0.52 0.06 0.02
8000 0.42 0.46 0.47 0.07 0.08
10000 0.33 0.45 0.36 0.18 0.03
12000 0.37 0.36 0.37 0.02 0.00

Table 3. Distance of the best solution computed by the NN heuristic with respect to the others heuristics.

The NN heuristic presents a behaviour similar to a greedy heuristic; in fact, the quality of the solutions computed
by NN tend to increase as  increases. The greedy quality of the NN heuristic can be explained due to the sparsity
and local connectivity of the geometric connected graphs used in this study. Finally the performance of KL is better
that the ML(500) and ML(1000) heuristics in small size graphs but similar in large graphs.
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IV. CONCLUSIONS

The numerical experiments developed in this work allow to affirm that the neural network heuristic applied to
the Graph Bisection Problem present a greedy behaviour: It obtains good solutions in shorter times in comparison
to the other local improvements heuristics that were studied: Kernighan-Lin, Multilevel. The NN heuristic must be
applied as a sub-heuristic of a local improvements heuristic. For this reason, in order to improve the convergence
times of ML we propose that the partitioning and uncoarsening with refinement phases of this heuristic must be
performed by the NN heuristic in the case of sparse locally connected graphs, such geometrically connected graphs.
For large graphs, the results for best known solution and convergence times suggest that for sparse geometrically
connected graphs is recommendable to use  as partitioning heuristic.
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