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1. Volunteer Computing and BOINC 
Volunteer computing provides today many teraflops of contributed processor power to a wide 
range of scientific and technical projects. The first example of a large volunteer computing 
system was SETI@home [1], at the Berkeley Space Sciences Laboratory. This attracted so 
much volunteer interest and CPU power that its inventors, led by David Anderson, went on to 
develop open source middleware (the Berkeley Open Infrastructure for Network Computing: 
BOINC [2]) which enables hundreds of institutes or individual researchers to access large 
amounts of computing power otherwise unavailable to them.  
 
The BOINC model is based on a project server which sends out jobs on behalf of a BOINC 
project to any volunteer client nodes which have attached to the project to assist it with its 
computing tasks. The project server receives back any results for the submitted jobs, 
validates them and deals with issues of client down-time or unreliability. There is also a 
comprehensive system of project message boards to allow communication between 
volunteers and project staff, and credit is awarded to volunteers to encourage their 
collaboration. 
 
However, until recently, each BOINC project required considerable effort to set up, first to port 
its computing application to a wide variety of BOINC client platforms (typically Windows, but 
with some Linux and MacOSX systems), and then to develop suitable job submission scripts 
to manage the flow of work between the project scientists and their BOINC server. The 
present work offers solutions to both of these problems as part of a BOINC system supporting 
the LHC experiments at CERN. 
 
2. Grids and Clouds 
A traditional means of supplying computing power to research projects has been the 
development of "research Grids". These are essentially distributed federations of large 
computing clusters belonging to research institutes and operated by them. An alternative for 
smaller research groups or institutes has been the installation and support of dedicated local 
computing clusters, with all the operational and financial overheads that this entails. 
 
A recent change to this traditional model has seen the emergence of "computing clouds". This 
revolutionary development  allows efficient leverage of the installed capacity of large 



computing centers by offering attractive rented chunks of processor power and storage to 
consumers over the Internet. Providers like Amazon, Google, IBM and Microsoft can benefit 
from the economies of scale associated with their highly optimized installations, and 
customers can benefit by simply using resources when it suits them and incurring no 
overheads or wasted cycles when they are unused. 
 
3. Virtualization 
A key technology that has enabled such cloud development is virtualization. This permits the 
logical separation of an underlying physical computing fabric, installed in a computing centre, 
from the users' view of the computing resources provided by this fabric. In particular, 
underlying platform characteristics such as operating system, memory and CPU configuration, 
and I/O connectivity can be abstracted into virtual machines of chosen standard type(s) which 
can then be further  custom-configured for (or by) the end-users for the period of their 
resource occupation. For an example of such a service, see details [3] of the Amazon Web 
Services Elastic Compute Cloud (EC2) and Simple Storage Service (S3). 
 
But virtualization can also be extremely useful in its own right for volunteer computing, by 
enabling cross-platform support of project applications across the wide range of volunteer 
clients which are encountered on the Internet. Previously, it was necessary to port and 
maintain such an application on all popular volunteer platforms, particularly Windows, in order 
to have a sufficient pool of client machines for a demanding project. In important disciplines 
like High Energy Physics, almost all code is developed under Linux (in fact under a particular 
brand of Linux, Red Hat Scientific Linux SL4.x or SL5.x), so porting to Windows or even to 
other Linux flavours, is extremely undesirable. Both the quantity of code involved and the 
frequency of code changes makes porting impractical and working physicists resist strongly 
any such suggestion. However, using virtualization, an entire application environment 
including operating system, code, libraries and support utilities can be incorporated into a 
virtual image, which can then be executed under a suitable virtual hypervisor installed on the 
client machines, ensuring complete compatibility of the application with the developers' own 
version. 
 
4. BOINC and Virtualization 
This work, as well as most of that which followed and is described in this paper, was carried 
out by CERN Summer Students and Research Fellows in the summers of 2006-2009. Starting 
in 2006, we started to investigate the use of either emulation or virtualization for BOINC, 
driven by the porting considerations just described. We quickly showed that emulation was too 
slow but that virtualization entailed only a few percent of CPU overhead and looked very 
promising, given the scale of the potential volunteer base.  
 
We looked for a method which would require little or no changes to the standard BOINC client 
or server infrastructure. The method chosen was based on the "Wrapper" technique used for 
porting "legacy applications" to BOINC (i.e. those whose source is not available and which 
can therefore not be ported in the usual way using the BOINC API). The standard BOINC 
Wrapper [4] simply forks and execs the binary of a legacy application and then communicates 
on behalf of the running application process with the BOINC core client code in the volunteer 



machine. To begin our work with virtualization under BOINC, we simply made minimal 
modifications to the standard Wrapper code so that it would boot a virtual machine under a 
preloaded hypervisor and then run a virtual image instead of a host executable. This yielded 
only primitive BOINC client functionality but was enough to show that we could run virtualized 
applications in this way. See reference [5] for a detailed report of this work. 
 
Summer 2007 brought further progress [6]. We attacked the problem of running a typical LHC 
physics application and succeeded with a full ATLAS ATHENA environment running under 
VMware and executing realistic test runs of the simulation package ATLFast under BOINC. 
However we rapidly encountered the problem of excessive image size. The size of a virtual 
image incorporating an entire HEP physics environment can be very large, of the order of 10 
GByte. One is also confronted with the problem of incorporating frequent code changes, 
requiring an image replacement at each code or library update. 
 
We investigated a possible solution to this problem. The image size was reduced by mounting 
most of the ATLAS libraries via the distributed file system AFS. But the system was not as 
robust as desired and it was felt that AFS, even read-only, may not be accessible to many 
volunteer clients out on the Internet. 
 
5. The CernVM Project 
In 2008, a CERN R&D project called CernVM [7] was launched by Predrag Buncic, offering a 
general solution to the problem of virtual image management for physics computing at the 
LHC experiments. Instead of loading each running virtual machine with a full image containing 
all the code and libraries for an experiment's applications, only a basic "thin appliance" of 
about 100MB is loaded initially, and further image increments are demand-loaded as needed 
by any given application and choice of LHC experiment. Updates to images after code 
changes are made automatically by the CernVM system, which keeps up to date versions of 
all image modules in a repository service for each supported LHC experiment. The resulting 
working images are typically under 1 GByte in size and are also cached by the virtual 
machines, minimizing access to the CernVM repository until changes appear in the physics 
code or a new type of application needs to be executed.  
 
Not only has CernVM solved the problems of virtual image size and of image updating, but it 
also satisfies the physicists' requirement of requiring absolutely minimal changes to their 
working habits. In effect, with only trivial extensions to their existing code building scripts, they 
obtain a complete set of virtual image modules in the CernVM repository at the same time as 
their normal set of Red Hat Linux executables. 
 
6. CernVM and Clouds 
The virtual image formats that can be produced by CernVM are extremely varied. Support 
exists for basically every known hypervisor. In particular, physicists appreciate its support for 
running images under VMware, VirtualBox or Parallels, allowing them to test and develop 
large physics packages on their Windows or MacOSX laptops. Another very fruitful option 
opened to them by CernVM is that, with no further changes, they can run their applications on 
a production scale on computing clouds such as the Amazon EC2. Even though such 



commercial cloud offerings must be paid for, this has already affected the outlook of the 
physics communities and has put pressure on the LHC Grid community who are trying to 
serve physicists' needs using an older and sometimes less convenient infrastructure. The 
actual price of an EC2-like solution is not so much more today than a Grid solution, if all the 
overheads are fully accounted for. Of course, not all LHC physics computing is suitable for 
cloud operation, particularly that which is I/O intensive or needs widely distributed data sets; 
but a significant proportion can be, depending on market prices of the respective service 
offerings. 
 
7. Combining BOINC and CernVM 
With the advent of CernVM in 2008, we realized that a solution for our remaining problems 
now existed, and work was begun to prepare for more general support of virtual hypervisors in 
BOINC, capable of running CernVM or other virtual images as guest processes under control 
of the BOINC core client in the host machine. To achieve this, we decided to use hypervisors 
such as VMware and VirtualBox which had started to expose full-function API's to start and 
stop virtual machines, load and save running images, and communicate with the guest 
processes in the VM's. Two early prototypes were made independently by David Weir and 
Kevin Reed of IBM, reported in  [8], using modified BOINC Wrapper programs and the 
VMware Server hypervisor. 
 
As a further step, a general-purpose "VM controller" layer was written by David Garcia 
Quintas [9] which allows asynchronous communication to occur among host and guest 
entities, and files and other process information to be exchanged between the host and guest 
layers. Generic support for various hypervisors was incorporated in this layer and VirtualBox 
was chosen for the intensive testing which followed.  
 
Next, a completely new wrapper called "VMwrapper" was written by Jarno Rantala [10], using 
the VM controller services. VMwrapper is written in Python using BOINC API Python bindings 
written by David Weir [11]. The VM controller code is also written in Python. To configure the 
new BOINC-VM applications, VMwrapper supports XML files with formats based on standard 
BOINC job.xml files but with additional tags to support the new functions associated with VM 
and guest process control.  VMwrapper is also functionally back-compatible with the standard 
BOINC Wrapper, and will run a host application as before if provided with a standard job.xml 
file. 
 
8. Last Steps to a Volunteer Cloud 
In order to provide additional computing resources to the LHC experiments, it is important not 
to expect the physicists who run job production to make changes to their existing scripts or 
procedures. To use BOINC in a classic way would violate this principle, and likely result in a 
system without many users. But we observed that a large amount of LHC job production is 
being done using a "pilot job" approach: rather than submit jobs to the Grid or to in-house 
clusters using existing schedulers, the LHC experiments have developed their own job 
submission and scheduling systems (e.g. [12],[13]), which send pilot jobs into a fabric and 
use them to work out the best scheduling strategies to use at any given time. These systems 
also account for failures of jobs or compute nodes, considering the fabric as an unreliable 



resource. This corresponds perfectly to the situation with a collection of BOINC resources 
which may appear, disappear or run intermittently. 
 
So we decided to interface to the Pilot-job systems, and chose to use a generic interface 
called Co-Pilot [14]  which offers a gateway to the differing Pilot-job implementations of the 
LHC experiments. On each experiment's side of the gateway, a software package called a 
"Co-Pilot Adapter" is required: currently only ALICE has such an adapter and so initial testing 
has used ALICE jobs. Adapters for ATLAS, CMS and LHCb will be produced in order to 
complete the system. 
 
In effect we have been able to set up a BOINC computing configuration which simply appears 
as an additional cloud resource for the LHC experiments, in exactly the same way as EC2 and 
other cloud resources have been interfaced to them. All the code to support the Co-Pilot 
agents, and thus to communicate with the LHC pilot job schedulers via the Co-Pilot adapters, 
is included in the CernVM images that we use. Thus no changes to BOINC or to any LHC 
experiment code or procedures are needed. 
 
This resulting "volunteer cloud" for LHC computing is about to be beta-tested, initially for the 
ALICE collaboration. It is expected to be suitable for running simulation, event generation, and 
perhaps some analysis work, with an emphasis on CPU intensive rather than  data intensive 
problems. 
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