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SUMMARY 

Accurate energy eigenvalues for the quadratic Zeeman effect in 2D are presented using a new 

approximation technique. This technique is an extension of the two-point quasi-rational 

approximations, applied to multiple points. The calculations are carried out for the ground state 1s and 

the excited states s1 , p2  and .3 d  The results obtained are much better than those obtained in 

previous works. We have also shown the advantage of our approximants with respect to other 

approximate methods. 

Aproximaciones  analíticas a los autovalores de la energía del efecto Zeeman 

Cuadrático en  dos dimensiones  

RESUMEN 

En este trabajo se presenta una técnica muy precisa para el cálculo de los autovalores de la energía para 

el efecto Zeeman cuadráticos en 2D. Esta técnica es una extensión de las aproximaciones 

cuasiracionales a dos puntos, aplicada a múltiples puntos. Los cálculos se realizaron para el estado base 

1s y los estados excitados p2  and .3 d  Los resultados obtenidos son muchos mejores que aquellos 

obtenidos en trabajos previos. Mostramos también las ventajas de  nuestros aproximantes con respecto 

a otros métodos aproximados. 
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Introduction 

In this work, hydrogenlike atoms in a magnetic field in 2-D are considered for systems where the 

Coulomb energy scale is about the magnetic interaction. This is the case for instance of conduction 

electrons in GaAS. Since neither the Coulomb energy, neither the magnetic energy can be considered 

small parameters, the linear approximation, denoted as Zeeman effect, is not a good approximation and 

the quadratic Zeeman effect should be taken in account. The characteristic parameter   is of order one, 

being   the ratio between both energies, that is,      )(// 2*332*
0 mecBRBB   , where B is the 

induction magnetic field, *
0R  is the effective Rydberg constant, *m  is the effective mass of the 

conduction electrons, h is the Planck constant, (-e) is the electron charge, c is the speed of light and B  

is the Bohr magneton. The Hamiltonian with energy in units of  *
0R  and position in units of effective 

Bohr radius 224** 2/ ema   is  
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where 2  is two-dimensional Laplacian  (i.e., 
0

*
0 A100a  for GaAs), the magnetic field is considered 

to be in z-direction and the symmetric gauge   2/0,,BA xy  has been used. Considering the 

solution of Eq.(1) as   2/)()( mieR then the Schrödinger equation  becomes the second order 

differential equation 
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No analytic solutions are know for  Eq.(2). Several methods have been used to obtain approximate 

solutions, such as the two-point quasi-rational approximants TPQA (Martin P. 1992); Padé Method 

(McDonald and Richie  1986), 1/N shifted technique (Mustafa  O. 1993) and  numerical computations 

(Villalba and Pino 1998). An extension of the TPQA method will be used here, denoted as multipoint 



quasi-rational approximants (MPQA), where power expansions in several points will be used 

simultaneously ( Castro E. et. al.). 

Multipoint quasi-rational approximants 

In this method there is not need to use the asymptotic expansion, thought this can also be used mainly 

to define the form of the approximants. The numerical value of the functions and its derivatives of first 

and second order mainly have to be used and they can be determined by numerical computations. Once 

the form of the approximant has been decided, their parameters will be determined by equalizing its 

values and derivatives to those obtained by the numerical computations explained above.  

In our case, the functions to approximate are the eigenvalues of equation (2). The form of the 

approximants will be   
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As in Padé method,  LP  and   MQ  are polynomials in    of degrees L and M, respectively. The 

coefficients kp  and iq  of the approximant are determined by imposing that )(
~ E  and )(E , and  its 

first  and  second  derivatives  22 /)(,/)(  dEddEd   should coincide in  some chosen  points  

r
 ( r = 1, 2, 3, …n)  
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The number of equations must be equal to the number of parameters to be determined. First the relation 

between  L and M must be determined in order to produce the largest accuracy with the same number 

of parameters.  Several cases were tested and the best results were obtained when 1ML  . Now, 

increasing the degree of the polynomials the accuracy increases. Sometimes as in our case, it is better 

to leave a free parameter, by using a number of equations one unit lesser than the unknowns, and 

determining the free parameter by minimizing the error between the approximant and the numerical 

solutions. In the present work the free parameter was Mq . 

 

Tabla I : Values of the coefficients of the parameters p’s and q’s for the MPQA ( L = 5, M = 4) for  the 

s1 , p2  y d3 states. 

Results and Conclusions 

The accuracy of the MPQA depends first on the accuracy with which the eigenenergies and its 

derivatives were determined by numerical computation.. The numerical calculations of the eigenvalues 



was performed with the shooting method using Eq.(2). The derivatives were determined by central 

differences. The calculated  values for the coefficients of the MPQA, for the s1 , p2  and d3  states , 

are shown in Table I. The number of parameters to determine were equal to those used in Martin P et. 

al. (1992), using  the TPQA method. This was necessary in order to obtain an adequate comparison.   

 

Tabla II:   Maximum errors for the MPQA and TPQA of higher order for the three electron states 

considered.  

 

In Table II, the MPQA and TPQA method are compared. The best way to do it is by looking at the 

maximum errors for the parameters to be determined.  The accuracy of the MPQA is high and better 

than those previously published by Martín P et. al., showing better results and arround one or two 

orders of magnitude lower error than the TPQA method. 

The MPQA technique looks like a worthwhile technique to obtain approximate eigenvalues for some 

potentials in Quantum Mechanics. The application range of applications seems ampler than that of 

other approximation techniques and the accuracy obtained is better for the same number of parameters 

to determine. An additional advantage is that the form  of the approximants can be simpler than that of 

the TPQA method. 
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