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SUMMARY 

A technique is presented that allows to obtain analytic approximations for the energy eigenvalues of the 

one-dimensional Schrödinger equation with anharmonic potentials. This technique is based on an 

original way of obtaining perturbative expansions, together with the use of quasi-rational approximants 

found from these expansions at various points. The technique is applied explicitly to the ground state of 

the quartic anharmonic oscillator. 

 

Aproximantes analíticos para los autovalores de energía  

de potenciales anarmónicos 

RESUMEN 

Se presenta una técnica que permite obtener aproximaciones analíticas para los autovalores de energía de 

la ecuación de Schrödinger unidimensional con potenciales anarmónicos. La técnica esta basada en una 

forma original de obtener expansiones perturbativas, junto con el uso de aproximantes cuasi-racionales 

obtenidos a partir de estas expansiones en varios puntos. La técnica es aplicada explícitamente al estado 

base del oscilador armónico de grado cuatro. 
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 Introduction 

The quantum anharmonic oscillator is one of the most studied potentials in the one-dimensional 

Schrödinger equation for which no exact analytic solution is known. Many techniques have been 

developed that allow to deal with the problem of finding the energy eigenvalues or even the eigenstates, 

either numerically or in an approximate analytic way. The last alternative is particularly attractive, since 

it allows to obtain analytic expressions that can be used, in many contexts, in the same way as one would 

use the exact ones, if they existed. The present work goes in this direction. Of course, the usefulness of a 

particular technique depends on how precise the analytic approximations are, as well as the simplicity of 

the approximating functions themselves. It will be shown here that using the power series and asymptotic 

expansion of the energy eigenvalues (in the parameters of the potential), together with expansions at 

intermediate points, it is possible to build very precise and simple quasi-rational approximants for the 

energy eigenvalues of the quartic anharmonic oscillator.  The Schrödinger equation for the quartic 

anharmonic oscillator is given by 
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Redefining x  as xAx 4/1  and  EAE 2/1 , and taking 2/3 AB , we obtain a Schrödinger 

equation depending on only one parameter 
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The approximants will be functions of this parameter, )(EE  , and they will be constructed demanding 

that its behavior almost matches that of the exact eigenvalues for 0   and   , as well as its 

behavior at possible intermediate points that can be chosen  arbitrarily. 



Power series 

To find the power series, the energy can be expanded as 
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210    Introducing these expressions for E  and   in 

equation (2), and asking it to be satisfied at every order in  , leads to a system of differential equations, 
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   The coefficients ...,, 10 EE , as well as the functions ...,, 10   of the power 

series, can be easily found since 000 EL    can be solved exactly. In the case of the ground state, 
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211   . When this is introduced in equation 4, the function 0  

disappears and a relation between two polynomials is left. Since this relation must be satisfied at each 

order in x , a system of equations in 1E  and the spi  is obtained, whose solution is 0p1  , 8/3p2  , 

0p3  , 8/1p4   and 4/3E1  . The same procedure can be repeated for ,, 32  etc., writing 
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0 .  We obtain ,10 E  ,4/31 E  ,16/212 E  ,64/3333 E  1024/308854 E .  This 

coincides with the results that are obtained using the standard Rayleigh-Schrödinger perturbation 

method, with the advantage that no information about the eigenstates of energy levels different from the 

one being considered is required in order to obtain the terms of higher order.  One can also find 



expansions at intermediate points defining aa    and expanding E  and   as power series around 

0a  . Doing this, one can find a system of equations similar to the one shown above, but now the 

operator L  becomes 42
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LL a  . This operator does not have any known exact 

solutions, so the coefficients must be found by solving the differential equations numerically. 

Asymptotic Series 

We can do the change of variables  yx 6/1 , and defining 3/2~    and  EE
~ 3/1 , the 

Schrödinger equation becomes  
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We can expand as before, ...
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210   EEEE    which leads to the 

following system of equations 
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In other words, the eigenvalue E  goes as  3/1  when  . The coefficients ...,,
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found solving the differential equations (8)-(11). In particular, if we find up to the  th)1n(   function  
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the differential equation for n
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Construction of the approximants 

Taking into account the form of the asymptotic series, one can write an approximant in terms of rational 

functions depending on the parameter  , together with auxiliary functions that allow to reproduce the 

behavior at   
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1k kq1)(Q    .  Here   is a free parameter that can be adjusted in order to improve the 

precision of the approximant, and n defines its size,  which will depend on the total number of terms 

used from each series. The coefficients kkk c,b,a  and kq  can be obtained expanding the auxiliary 

functions and equating, order by order in  , ~  or a , with the corresponding expansions after 

multiplying both, the expansion and the approximant by the denominator )(Q   of the later. 

Results and conclusions 

In the case of the ground state, for the asymptotic expansion the differential equations (8)-(11) were 

solved numerically and the following values for the coefficients were found   06036194.1E
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was applied forcing the approximant to coincide with the exact eigenvalues at the points 2/1 , 

1 ,  2 , 5  and 10 . This is equivalent to  using only the first term in the expansion of the 

eigenvalue at  these intermediate points. Taking 3n   and 2 , we found   
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With this approximant, the maximum percent error obtained was of the order of  %10 4  for all 

values of   in the range ),0[  .  The technique described here can be applied also to other energy 

levels, as well as to any potential of the form ba xBxA)x(V  , or even radial potentials of the 

same form. This will be discussed in future publications. 

References 

Castro E, and Martín P (2000) Eigenvalues of the Schrödinger  equation with Coulomb potentials 

plus linear and harmonic radial terms. J. of Phys. A: Math and General, 33, 5321-5334 

De Freitas A, P. Martín, Castro E and Paz JL (2006) Eigenvalues and eigenfunctions for the ground 

state of polynomial potentials. Phys. Letters A, 362, 371-376 

De Freitas A, P. Martín, Castro E and Paz JL (2008) Multi-point quasi-rational approximants in 

quantum chemistry. New Developments in  Quantum Chemistry, edited by Research Signpost  (to 

be published) 


