Heterochalconas de pirazina “sobre-agua”: enfoque bioisostérico y su actividad antimicrobiana in vitro
Resumen
Se sintetizaron cinco heterochalconas (PI-1 a PI-5) mediante reacción de Claisen-Schmidt “sobre-agua”, un sistema heterogéneo con sustratos insolubles y base miscible, alcanzando rendimientos de 67 a 79%. La elucidación estructural se realizó por RMN 1H y 13C. La actividad antimicrobiana se evaluó frente a Staphylococcus aureus, Candida albicans y Escherichia coli, observán-dose inhibición solo en las dos primeras. Los halos de inhibición fueron mayores en C. albicans (12,2 ± 0,3 a 23,4 ± 0,6 mm) que en S. aureus (10,2 ± 0,6 a 16,7 ± 0,9 mm). Los bioisósteros clásicos (sustitución de hidrogeno por flúor) aumentaron la eficiencia farmacológica, mientras que los no clásicos (fenil por pirrol) la redujeron.
Recibido: 29/08/2025
Aceptado: 19/11/2025
Palabras clave
Texto completo:
PDFReferencias
S. Narayan, V. V. Fokin, K. B. Sharpless. Chemistry “on water”-Organic Synthesis in Aqueous Suspension. Wiley online library. Editor U. Marcus Lindstrom. (2007). https://doi.org/10.1002/ 9780470988817.ch11.
C Capello, U Fischer & K Hungerbühler. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chemistry, 9, 927 (2007). https://doi.org/10. 1039/b617536h.
R Kamboj, G Sharma, D Kumar, R Arora, C Sharma, K R Aneja. An environmentally sound approach for the synthesis of some fla-vanones and their antimicrobial activity. International Journal of ChemTech Research, 3, 901–910 (2011). https://www.resear-chgate.net/publication/288102730_An_environmentally_sound _approach_for_the_synthesis_of_some_flavanones_and_their_ antimicrobial_activity.
Q Torres-Sauret, M A Vilchis-Reyes, R Martinez, N Romero-Ce-ronio, E Alarcon-Matus, O Hernandez-Abreu, et al. Crossing bor-ders: On-Water Synthesis of Flavanones. ChemistrySelect, 7, (2022). https://doi.org/10.1002/slct.202202567.
Q Torres-Sauret, C A Sánchez, L F Roa de la Fuente, P P Montero, M T Flores Dorantes, J C Méndez-Moreno, et al. Síntesis de (E)-1,3-difenil-prop-2-en-1-ona y su evaluación sobre el crecimiento de una cepa de S. aureus fármacorresistente. Revista Mexicana de Ciencias Farmacéuticas, 48, 67–74 (2017). https://www.re-dalyc.org/pdf/579/57956616008.pdf.
E. Charris, M. C. Monasterios, M. E. Acosta, M. A. Rodríguez, N. D. Gamboa, G. P. Martínez, et al. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyra-zoline hybrids. A dual action. Med Chem Res (2019), 28:2050. https://doi.org/10.1007/s00044-019-02435-0.
H. Ramírez, J. Domínguez, E. Fernández-Moreira, J. Rodrigues, M. Rodríguez, J. Charris. Synthesis of 4-benzylsulfanyl and 4-benzylsulfonyl chalcones. Biological evaluation as antimalarial agents. Farmacia (2022), 70, 1, 30-41. https://doi.org/10.31925/ farmacia.2022.1.5.
F H Hernández. Q Torres-Sauret, N Romero-Ceronio, M A Vil-chis-Reyes, A G Rivera, C L E García. Efecto bioisósterico para la actividad antimicótica y antioxidante de cuatro tiofenilchalco-nas. Journal of Basic Sciences, 9, 77–86 (2023). https://dial-net.unirioja.es/servlet/articulo?codigo=9493699.
K H Jeon, H B Yu, S Y Kwak, Y Kwon, Y Na. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorganic & Medicinal Chemistry, 24, 5921-5928, (2016). https://doi.org/10.1016/j.bmc.2016.09.051.
E Polo, N Ibarra-Arellano, L Prent-Peñaloza, A Morales-Bayuelo, J Henao, A Galdámez, M Gutiérrez. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bischalcone derivatives and the evaluation of their antioxidant properties and as acetylcho-linesterase inhibitions. Bioorganic Chemistry, 90, (2019). https://doi.org/10.1016/j.bioorg.2019.103034.
M Kucerova-Chlupacova, M Dosedel, J Kunes, M Soltesova-Prnova, M Majekova, M Stefek. Chalcones and their pyrazine an-alogs: synthesis, inhibition of aldose reductase. antioxidant activ-ity, and molecular docking study. Monatshefte für Chemie-Chemical Monthly, 12, 20, 1104-17 (2025). https://doi.org/10. 3390/molecules20011104.
S Burmaoglu, O Algul, A Gobek, D A Anil, M Ulger, B G Erturk, E Kaplan, A Dogen, G Aslan. Design of potent fluoro-substituted chalcones as antimicrobial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 32, 1, 490-496, (2017). https:// doi.org/10.1080/14756366.2016.12617.
K V Sashidhara, K B Rao, P Kushwaha, R K Modokuri, P Singh, I Soni, P K Shukla, S Chopra, M Pasupuleti. Chalcone-Thiazole Staphylococcus aureus. American Chemical Society Medical Chemistry Letters, 6, 7, 809-13, (2015). https://doi.org/10.1021/ acsmedchemlett.5b00169.
M Chlupacova, V Opletalova, J Kunes, L Silva, V Buchta, L Duskova, et al. Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en- 1-ones. Folia Pharmaceutica Universitatis Carolinae, 33, 31–43 (2005). Available at: https://www.researchgate.net/publication/2924758 61_Synthesis_and_biological_evaluation_of_some_ring-substi-tuted_E-3-aryl-1-pyrazin-2-ylprop-2-en-_1-ones.
M Kucerova-Chlupacova, V Vyskovska-Tyllova, L Richterova-Finkova, J Kunes, V Buchta, M Vejsova, et al. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs. Molecules, 21, 1421 (2016). https://doi.org/10.3390/molecules 21111421.
M Kucerova-Chlupacova, M Dosedel, J Kunes, M S Prnova, M Májeková, M Stefek. Chalcones and their pyrazine analogs: syn-thesis, inhibition of aldose reductase, antioxidant activity, and mo-lecular docking study. Monatshefte für Chemie-Chemical Monthly, 149, 921–929 (2018). https://doi.org/10.1007/s00706-018-2146-6.
F P Byrne, S Jin, G Paggiola, T H M Petchey, J H Clark, T J Farmer, et al. Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 4, 7 (2016). https://doi.org/10.1186/s40508-016-0051-z.
R Q Henderson, A P Hill, A M Redman, H F Sneddon. Develop-ment of GSK’s acid and base selection guides. Green Chemical, 17, 945–949 (2015). https://doi.org/10.1039/C4GC01481B.
A Thebti, A Meddeb, I B Salem, C Bakary, S Ayari, F Rezgui, et al. Antimicrobial Activities and Mode of Flavonoid Actions. An-tibiotics, 12, 225 (2023). https://doi.org/10.3390/antibiotics12020225.
A C S. NMR Guidelines for ACS Journals. ACS publications (2013). https://doi.org/10.1021/acscatal.3c00995.
Q Torres-Sauret. Síntesis de Análogos Heteroaromáticos de Chal-conas y su Evaluación Antibiótica in vitro. Universidad Juárez Autónoma de Tabasco. Tabasco, México (2017). https://ri.ujat. mx/items/424c3bbc-18a6-4349-a5c6-87f03e81dec1.
PerkinElmer. PerkinElmer Chem3D (2020). Disponible en: https://www.perkinelmer.cas.org/.
I. Gajic, J. Kabic, D. Kekic, M. Jovicevic, M. Milenkovic, D. Mi-tic Culafic, et al. Antimicrobial Susceptibility Testing: A compre-hensive Review of Currently used Methods. Antibiotics, 11, 4 (2022). https://doi.org/10.3390/antibiotics11040427.
M Yaseen Mowlana, A J Abdul Naseer, S J Sathik. Synthesis, Characterization and biological activity of some Heterocyclic De-rivatives. International Journal of Scientific and Research Publications, 7, 7, 2250-3153, (2017). https://www.chrome-ex-tension://efaidnbmnnnibpcajpcglclefind-mkaj/https://www.ijsrp.org/research-paper-0717/ijsrp-p6782.pdf.
Clinical and Laboratory Standards Institute. M11-A8 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Ap-proved Standard-Eighth Edition. Available at: www.clsi.org. Pub-licado: 02/2012. Disponible en: https://www.chrome-exten-sion://efaidnbmnnnibpcajpcglclefindmkaj/https://webstore.ansi. org/preview-pages/CLSI/preview_CLSI+M11-A8.pdf.
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aero-bically. Publicado: 06/2012. Available at: https://www.clsi.org/ shop/standards/m07/.
I R López Solano, L F Roa-de la Fuente, C Alvarado Sánchez., J A González Garrido, Q Torres-Sauret. Efecto bactericida de (E)-3-fenil-1-(2-furanil)-prop-2-enona y (E)-3-fenil-1-(2-tiofenil)-prop-2-en-1-ona frente a Klebsiella pneumoniae. in XIV Reunión de la Academia Mexicana de Química Orgánica (2018). https://doi.org/10.33263/BRIAC93.912918.
M. F. Varela, J. Stephen, M. Lekshmin, M. Ojha, N. Wenzel, L. M. Sanford, et al. Bacterial Resistance to Antimicrobial Agents. Antibiotics, 10, 5 (2021). https://doi.org/10.3390/antibiot-ics10050593.
B Germán, Fernandez-Olmo Ana, G Celia, Sáez-Nieto Juan A, V Sylvia. Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Clínicas y Microbiología Clí-nica, 29, 8, (2011). https://doi.org/10.1016/j.eimc2011.03.012.
G A March Rosselló, M A Bratos Pérez. Antibiograma rápido en Microbiología Clínica. Enfermedades Infecciosas y Microbio-logía Clínica, 34, 61–68 (2016). https://doi.org/10.1016/j.eimc.2014.11.014
Sebas M C. A Brief Review on Bioisosterism in Drug Design and Designing of Advanced Drugs. International Journal of Re-search and Review, 11, 341–348 (2024). https://doi.org/10. 52403/ijrr.20240836.
T Kitanosono, S Kobayashi. Reactions in Water Involving the “On-Water” Mechanism. Chemistry – A European Journal, 26, 9408–9429 (2020). https://doi.org/10.1002/chem.201905482.
H B Oscar, U C Yaidimi, R M Douglas, del Carmen G María. Staphylococcus aureus y su identificación en los laboratorios mi-crobiológicos. Revisión bibliográfica. Scientific Electronic Li-brary Online, 9, 1, (2025). http://scielo.sld.cu/scielo.php? script=sci_arttext&pid=S1025-02552005000100016.
E Ebreu, S G Jülide, H I Elvan, Y Sükran, T Alper, Y Yasemin, C K Zeynep. Medically important Candida spp. Identification: an era beyond traditional methods. Turkish Journal of Medical Sci-ences, 52, 3 834-840, (2022). https://doi.org/10.55730/1300-0144.5380.
T J Silhavy, D Kahne, S Walker. The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414–a000414 (2010). https://doi.org/10.1101/cshperspect.a000414.
M Kucerova-Chlupacova, M Dosedel, J Kunes, M Soltesova-Prnova, M Majekova, M Stefek. Chalcones and their pyrazine an-alogs: synthesis, inhibition of aldose reductase. Antioxidant activ-ity, and molecular docking study. Monatshefte für Chemie-Chemical Monthly, 12, 20, 1104-17, (2025). https://doi.org/ 10.3390/molecules20011104.
D Meier, M V Hernández, L V Geelen, R Muharini, P Proksch, J E Bandow, et al. The plant-derived chalcone Xanthoangelol tar-gets the membrane of Gram-positive bacteria. Bioorganic & Me-dicinal Chemistry, 27, 115151 (2019). https://doi.org/10.1016/ j.bmc.2019.115151.
G M Costa, E H Endo, D A G Cortez, C V Nakamura, P B Días Hijo. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus au-reus. Medical Mycology Journal, 26, 217–226 (2016). https://doi.org/10.1016/j.mycmed.2016.03.002.
M Mellado, L Espinoza, A Madrid, J Mella, E Chávez-Weisser, K Díaz, et al. Design, synthesis, antifungal activity, and structure–activity relationship studies of chalcones and hybrid dihydro-chromane–chalcones. Molecular Diversity, 24, 603–615 (2020). https://doi.org/10.1007/s11030-019-09967-y.
A Patel, I Panchal, I Parmar, B Mishtry. Synthesis of new flavo-noid and chalcone derivatives as antimicrobial agent by green chemistry approach. International Journal Pharmaceutical Sci-ences and Research, 8, 6, 2725-2730 (2017). https://doi,org/ 10.13040/IJPSR.0975-8232.
D Prat, O Pardigon, Hans-Wolfram F, S Letestu, V Ducandas, P Isnard, et al. Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes. Organic Process Research & De-velopment, 17, 1517–1525 (2013). https://doi.org/10.1021/ 33op4002565
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
DOI: https://doi.org/10.53766/AVANQUIM
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.