Heterochalconas de pirazina “sobre-agua”: enfoque bioisostérico y su actividad antimicrobiana in vitro

Izaflor Alvarado Méndez, Miguel Ángel Vilchis Reyes, Jorge Cortez Elizalde, Nancy Romero Ceronio, Alam Yair Hidalgo de los Santos, Sauret Quirino Torres

Resumen


Se sintetizaron cinco heterochalconas (PI-1 a PI-5) mediante reacción de Claisen-Schmidt “sobre-agua”, un sistema heterogéneo con sustratos insolubles y base miscible, alcanzando rendimientos de 67 a 79%. La elucidación estructural se realizó por RMN 1H y 13C. La actividad antimicrobiana se evaluó frente a Staphylococcus aureus, Candida albicans y Escherichia coli, observán-dose inhibición solo en las dos primeras. Los halos de inhibición fueron mayores en C. albicans (12,2 ± 0,3 a 23,4 ± 0,6 mm) que en S. aureus (10,2 ± 0,6 a 16,7 ± 0,9 mm). Los bioisósteros clásicos (sustitución de hidrogeno por flúor) aumentaron la eficiencia farmacológica, mientras que los no clásicos (fenil por pirrol) la redujeron.

Recibido: 29/08/2025
Aceptado: 19/11/2025


Palabras clave


Antibacteriano; Antifúngico; Bioisosterismo; Heterochalconas; Sobre-agua

Texto completo:

PDF

Referencias


S. Narayan, V. V. Fokin, K. B. Sharpless. Chemistry “on water”-Organic Synthesis in Aqueous Suspension. Wiley online library. Editor U. Marcus Lindstrom. (2007). https://doi.org/10.1002/ 9780470988817.ch11.

C Capello, U Fischer & K Hungerbühler. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chemistry, 9, 927 (2007). https://doi.org/10. 1039/b617536h.

R Kamboj, G Sharma, D Kumar, R Arora, C Sharma, K R Aneja. An environmentally sound approach for the synthesis of some fla-vanones and their antimicrobial activity. International Journal of ChemTech Research, 3, 901–910 (2011). https://www.resear-chgate.net/publication/288102730_An_environmentally_sound _approach_for_the_synthesis_of_some_flavanones_and_their_ antimicrobial_activity.

Q Torres-Sauret, M A Vilchis-Reyes, R Martinez, N Romero-Ce-ronio, E Alarcon-Matus, O Hernandez-Abreu, et al. Crossing bor-ders: On-Water Synthesis of Flavanones. ChemistrySelect, 7, (2022). https://doi.org/10.1002/slct.202202567.

Q Torres-Sauret, C A Sánchez, L F Roa de la Fuente, P P Montero, M T Flores Dorantes, J C Méndez-Moreno, et al. Síntesis de (E)-1,3-difenil-prop-2-en-1-ona y su evaluación sobre el crecimiento de una cepa de S. aureus fármacorresistente. Revista Mexicana de Ciencias Farmacéuticas, 48, 67–74 (2017). https://www.re-dalyc.org/pdf/579/57956616008.pdf.

E. Charris, M. C. Monasterios, M. E. Acosta, M. A. Rodríguez, N. D. Gamboa, G. P. Martínez, et al. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyra-zoline hybrids. A dual action. Med Chem Res (2019), 28:2050. https://doi.org/10.1007/s00044-019-02435-0.

H. Ramírez, J. Domínguez, E. Fernández-Moreira, J. Rodrigues, M. Rodríguez, J. Charris. Synthesis of 4-benzylsulfanyl and 4-benzylsulfonyl chalcones. Biological evaluation as antimalarial agents. Farmacia (2022), 70, 1, 30-41. https://doi.org/10.31925/ farmacia.2022.1.5.

F H Hernández. Q Torres-Sauret, N Romero-Ceronio, M A Vil-chis-Reyes, A G Rivera, C L E García. Efecto bioisósterico para la actividad antimicótica y antioxidante de cuatro tiofenilchalco-nas. Journal of Basic Sciences, 9, 77–86 (2023). https://dial-net.unirioja.es/servlet/articulo?codigo=9493699.

K H Jeon, H B Yu, S Y Kwak, Y Kwon, Y Na. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorganic & Medicinal Chemistry, 24, 5921-5928, (2016). https://doi.org/10.1016/j.bmc.2016.09.051.

E Polo, N Ibarra-Arellano, L Prent-Peñaloza, A Morales-Bayuelo, J Henao, A Galdámez, M Gutiérrez. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bischalcone derivatives and the evaluation of their antioxidant properties and as acetylcho-linesterase inhibitions. Bioorganic Chemistry, 90, (2019). https://doi.org/10.1016/j.bioorg.2019.103034.

M Kucerova-Chlupacova, M Dosedel, J Kunes, M Soltesova-Prnova, M Majekova, M Stefek. Chalcones and their pyrazine an-alogs: synthesis, inhibition of aldose reductase. antioxidant activ-ity, and molecular docking study. Monatshefte für Chemie-Chemical Monthly, 12, 20, 1104-17 (2025). https://doi.org/10. 3390/molecules20011104.

S Burmaoglu, O Algul, A Gobek, D A Anil, M Ulger, B G Erturk, E Kaplan, A Dogen, G Aslan. Design of potent fluoro-substituted chalcones as antimicrobial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 32, 1, 490-496, (2017). https:// doi.org/10.1080/14756366.2016.12617.

K V Sashidhara, K B Rao, P Kushwaha, R K Modokuri, P Singh, I Soni, P K Shukla, S Chopra, M Pasupuleti. Chalcone-Thiazole Staphylococcus aureus. American Chemical Society Medical Chemistry Letters, 6, 7, 809-13, (2015). https://doi.org/10.1021/ acsmedchemlett.5b00169.

M Chlupacova, V Opletalova, J Kunes, L Silva, V Buchta, L Duskova, et al. Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en- 1-ones. Folia Pharmaceutica Universitatis Carolinae, 33, 31–43 (2005). Available at: https://www.researchgate.net/publication/2924758 61_Synthesis_and_biological_evaluation_of_some_ring-substi-tuted_E-3-aryl-1-pyrazin-2-ylprop-2-en-_1-ones.

M Kucerova-Chlupacova, V Vyskovska-Tyllova, L Richterova-Finkova, J Kunes, V Buchta, M Vejsova, et al. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs. Molecules, 21, 1421 (2016). https://doi.org/10.3390/molecules 21111421.

M Kucerova-Chlupacova, M Dosedel, J Kunes, M S Prnova, M Májeková, M Stefek. Chalcones and their pyrazine analogs: syn-thesis, inhibition of aldose reductase, antioxidant activity, and mo-lecular docking study. Monatshefte für Chemie-Chemical Monthly, 149, 921–929 (2018). https://doi.org/10.1007/s00706-018-2146-6.

F P Byrne, S Jin, G Paggiola, T H M Petchey, J H Clark, T J Farmer, et al. Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 4, 7 (2016). https://doi.org/10.1186/s40508-016-0051-z.

R Q Henderson, A P Hill, A M Redman, H F Sneddon. Develop-ment of GSK’s acid and base selection guides. Green Chemical, 17, 945–949 (2015). https://doi.org/10.1039/C4GC01481B.

A Thebti, A Meddeb, I B Salem, C Bakary, S Ayari, F Rezgui, et al. Antimicrobial Activities and Mode of Flavonoid Actions. An-tibiotics, 12, 225 (2023). https://doi.org/10.3390/antibiotics12020225.

A C S. NMR Guidelines for ACS Journals. ACS publications (2013). https://doi.org/10.1021/acscatal.3c00995.

Q Torres-Sauret. Síntesis de Análogos Heteroaromáticos de Chal-conas y su Evaluación Antibiótica in vitro. Universidad Juárez Autónoma de Tabasco. Tabasco, México (2017). https://ri.ujat. mx/items/424c3bbc-18a6-4349-a5c6-87f03e81dec1.

PerkinElmer. PerkinElmer Chem3D (2020). Disponible en: https://www.perkinelmer.cas.org/.

I. Gajic, J. Kabic, D. Kekic, M. Jovicevic, M. Milenkovic, D. Mi-tic Culafic, et al. Antimicrobial Susceptibility Testing: A compre-hensive Review of Currently used Methods. Antibiotics, 11, 4 (2022). https://doi.org/10.3390/antibiotics11040427.

M Yaseen Mowlana, A J Abdul Naseer, S J Sathik. Synthesis, Characterization and biological activity of some Heterocyclic De-rivatives. International Journal of Scientific and Research Publications, 7, 7, 2250-3153, (2017). https://www.chrome-ex-tension://efaidnbmnnnibpcajpcglclefind-mkaj/https://www.ijsrp.org/research-paper-0717/ijsrp-p6782.pdf.

Clinical and Laboratory Standards Institute. M11-A8 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Ap-proved Standard-Eighth Edition. Available at: www.clsi.org. Pub-licado: 02/2012. Disponible en: https://www.chrome-exten-sion://efaidnbmnnnibpcajpcglclefindmkaj/https://webstore.ansi. org/preview-pages/CLSI/preview_CLSI+M11-A8.pdf.

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aero-bically. Publicado: 06/2012. Available at: https://www.clsi.org/ shop/standards/m07/.

I R López Solano, L F Roa-de la Fuente, C Alvarado Sánchez., J A González Garrido, Q Torres-Sauret. Efecto bactericida de (E)-3-fenil-1-(2-furanil)-prop-2-enona y (E)-3-fenil-1-(2-tiofenil)-prop-2-en-1-ona frente a Klebsiella pneumoniae. in XIV Reunión de la Academia Mexicana de Química Orgánica (2018). https://doi.org/10.33263/BRIAC93.912918.

M. F. Varela, J. Stephen, M. Lekshmin, M. Ojha, N. Wenzel, L. M. Sanford, et al. Bacterial Resistance to Antimicrobial Agents. Antibiotics, 10, 5 (2021). https://doi.org/10.3390/antibiot-ics10050593.

B Germán, Fernandez-Olmo Ana, G Celia, Sáez-Nieto Juan A, V Sylvia. Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Clínicas y Microbiología Clí-nica, 29, 8, (2011). https://doi.org/10.1016/j.eimc2011.03.012.

G A March Rosselló, M A Bratos Pérez. Antibiograma rápido en Microbiología Clínica. Enfermedades Infecciosas y Microbio-logía Clínica, 34, 61–68 (2016). https://doi.org/10.1016/j.eimc.2014.11.014

Sebas M C. A Brief Review on Bioisosterism in Drug Design and Designing of Advanced Drugs. International Journal of Re-search and Review, 11, 341–348 (2024). https://doi.org/10. 52403/ijrr.20240836.

T Kitanosono, S Kobayashi. Reactions in Water Involving the “On-Water” Mechanism. Chemistry – A European Journal, 26, 9408–9429 (2020). https://doi.org/10.1002/chem.201905482.

H B Oscar, U C Yaidimi, R M Douglas, del Carmen G María. Staphylococcus aureus y su identificación en los laboratorios mi-crobiológicos. Revisión bibliográfica. Scientific Electronic Li-brary Online, 9, 1, (2025). http://scielo.sld.cu/scielo.php? script=sci_arttext&pid=S1025-02552005000100016.

E Ebreu, S G Jülide, H I Elvan, Y Sükran, T Alper, Y Yasemin, C K Zeynep. Medically important Candida spp. Identification: an era beyond traditional methods. Turkish Journal of Medical Sci-ences, 52, 3 834-840, (2022). https://doi.org/10.55730/1300-0144.5380.

T J Silhavy, D Kahne, S Walker. The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414–a000414 (2010). https://doi.org/10.1101/cshperspect.a000414.

M Kucerova-Chlupacova, M Dosedel, J Kunes, M Soltesova-Prnova, M Majekova, M Stefek. Chalcones and their pyrazine an-alogs: synthesis, inhibition of aldose reductase. Antioxidant activ-ity, and molecular docking study. Monatshefte für Chemie-Chemical Monthly, 12, 20, 1104-17, (2025). https://doi.org/ 10.3390/molecules20011104.

D Meier, M V Hernández, L V Geelen, R Muharini, P Proksch, J E Bandow, et al. The plant-derived chalcone Xanthoangelol tar-gets the membrane of Gram-positive bacteria. Bioorganic & Me-dicinal Chemistry, 27, 115151 (2019). https://doi.org/10.1016/ j.bmc.2019.115151.

G M Costa, E H Endo, D A G Cortez, C V Nakamura, P B Días Hijo. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus au-reus. Medical Mycology Journal, 26, 217–226 (2016). https://doi.org/10.1016/j.mycmed.2016.03.002.

M Mellado, L Espinoza, A Madrid, J Mella, E Chávez-Weisser, K Díaz, et al. Design, synthesis, antifungal activity, and structure–activity relationship studies of chalcones and hybrid dihydro-chromane–chalcones. Molecular Diversity, 24, 603–615 (2020). https://doi.org/10.1007/s11030-019-09967-y.

A Patel, I Panchal, I Parmar, B Mishtry. Synthesis of new flavo-noid and chalcone derivatives as antimicrobial agent by green chemistry approach. International Journal Pharmaceutical Sci-ences and Research, 8, 6, 2725-2730 (2017). https://doi,org/ 10.13040/IJPSR.0975-8232.

D Prat, O Pardigon, Hans-Wolfram F, S Letestu, V Ducandas, P Isnard, et al. Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes. Organic Process Research & De-velopment, 17, 1517–1525 (2013). https://doi.org/10.1021/ 33op4002565




Depósito Legal: PPI200602ME2232
ISSN: 1856-5301

DOI: https://doi.org/10.53766/AVANQUIM

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.